选择合适的示波器进行高速电路调试和验证
作按钮组合成自己需要的操作界面。这样,MyScope操作面板可只包含用户需要的按钮,而其它不用的功能可以被完全忽略掉——于是用户将不再在众多复杂的菜单列表里寻找自己需要的功能——只要简单地打开“我的示波器”操作界面即可。更加简便的是,MyScope的自定义过程是完全的图形界面操作,您无须编写script,使用鼠标拖拽即可。
鼠标右键的弹出菜单,是用户操作时,可以在显示界面的特定位置(如测量结果、采集状态、通道标号、触发方式等等)上点击鼠标右键,即有与该位置所指示的参数相关的设置菜单弹出。熟悉 Windows风格的用户可以使用这一功能,几乎只用一只鼠标就可以完成所有的示波器操作,效率倍增。
从以上几点我们可以看到:采用 DPX技术的DPO平台示波器和传统示波器相比,快速采集能够最快最可靠地发现问题;Pinpoint硬件实时触发系统能够更精确地定位问题;FastFrame快采、自动测量、数学运算、FIR滤波器等功能可以从各种角度分析问题;同时,MyScope、鼠标右键弹出菜单等可以提高操作效率,降低工作复杂程度。这些都让DPO数字荧光示波器成为当今业界功能最强大、效率最高、分析能力最强的调试工具。
下一章中,我们将介绍使用DPO数字荧光示波器进行信号的验证。
第三章 使用实时数字荧光示波器进行验证——捕获和分析
验证(Verification),就是测试设计是否和它对应的各种标准(行业标准或者自定义标准)相符,以及有多少冗余量。验证和调试,是示波器的主要用途。
在使用示波器进行调试时,我们关心的主要指标是:
波形捕获率——决定仪器能够多快发现故障
触发系统——决定仪器能够多精确地定位故障
分析能力——决定仪器能够从波形里提取出多少有用信息。
而在使用示波器进行验证时,我们更关心的指标是:信号保真度——决定采集的样点是否能够真实反映信号特性;采样率和内存深度——决定单次捕获可以以多快的速度以及抓取多少样点供验证测试;分析工具——决定深入分析的程度和准确性。
信号保真度是一个比较复杂的问题,涵盖了示波器的带宽、采样率、内插、抖动噪底、本底噪声、时间测量精度、探头系统等多个方面。业界对此的讨论很多,也有很多相关文章,所以本文不再做详细分析,只强调示波器的频率响应对验证的影响。
频率响应,在示波器指标上反映为带宽和上升时间。带宽表征的是示波器的稳态响应能力,而上升时间是瞬态相应。经验上,带宽和上升时间(10~90%)的乘积是一个常数,这个常数和示波器的放大器模型有关。如高斯响应的放大器模型,这个常数是0.35;而高性能的示波器放大器模型比较复杂,该常数一会在 0.4~0.55之间。当然,从用户的角度看,这个常数应该越小越好:常数越小,则表示相同的带宽(稳态响应)下,该示波器的上升时间更快,也就是说瞬态响应更好;而上升时间一样的情况下,乘积小的示波器需要的带宽会相对低一些——而对示波器,带宽和价格是正比的,也就是说乘积小的示波器性价比更高。
我们验证测试对象一般都是脉冲(非正弦)信号,如通信信号、串行总线信号、高速脉冲信号、调制信号等等,所以示波器的瞬态响应相比起来更加重要。泰克DPO示波器在相同带宽下,能提供最快的上升时间,对于瞬态信号的测试非常有帮助。
另外一方面,高带宽示波器的不同设计结构,也会影响到验证测试的正确性、精度和速度:
近几年示波器带宽不断高速提升,如何在提升带宽的同时,保证带内幅度响应的平坦和相位响应的线性,成了一个重要的问题。有经验的工程师都知道,要完全从硬件入手,是不可能得到理想的平坦幅度响应和线性相位响应的。所以在高性能示波器的放大器技术中,各大示波器生产商都在使用软件提升带宽和优化响应的DSP技术。DSP技术的使用,确实能得到比较理想的幅度和相位响应,但是它并不是有利无害的。下图是示波器对阶跃信号的响应,蓝色为完全的模拟响应,而红色是 DSP处理后的响应。

DSP 提升、修正幅度和相位响应后,示波器可以更加精确地测量上升时间、眼图冗余等指标,有利于对数字通信信号、计算机总线信号等的验证测试。但是从红色的波形可以看到:虚线框部分,我们叫做“预过冲”,是一种不存在于现实信号中“假波形”,是由DSP处理产生出来的失真——对于阶跃信号来说,没有理由当上升能量还没有产生时,波形就开始振荡。所以当使用示波器测量高速脉冲、激光脉冲或类似信号时,DSP的处理就不再是测试人员期望的了——失真的波形错误指示了各个时间点的物理行为。
当然,DSP还有其它一些问题,如过驱动的信号的错误显示、较低的数
- 用数字荧光示波器对开关电源功率损耗进行精确分析(11-04)
- 数字荧光示波器结构融合模拟示波器和数字示波器的优势(03-03)
- 秘密武器助你从容应对噪声检测难题(03-29)
- 使用采样示波器对PCB进行串扰分析(11-06)
- 具有可调触发灵敏度的示波器可有效提高电路检测质量(01-11)
- 在手持式示波表上捕捉间歇性信号(01-25)
