一款完美的射频识别RFID空间定位系统设计
,发送的时序是A0,A4,A8,A1,A5,A2,A6,A3,A7.这样这9个标签就可以保证无碰撞地被读写器识别,这种多标签防碰撞冲突是多标签定位系统能够正常工作的前提。
图3 基于序列号对时隙数运算的排序算法
3 定位算法设计
本系统采用的定位算法是圆周定位法,圆周定位法是利用读写器接收标签信号得到RSSI值,通过相关的定位计算公式来进行定位的一种方法。
无线信号的接收信号强度和信号传输距离的关系可以用式(3)来表示,其中RSSI是接收信号强度,d是收发节点之间的距离,n是信号传播因子,EAF是环境因子。
由式(1)中可以看出,射频参数A和n的值决定了接收信号强度和信号传输距离的关系。A和n用于描述通信操作环境。射频参数A被定义为dbm,表示距发射机1 m时接收到信号平均能量的绝对值,如平均接收能量是-10 dbm,那么参数A就被定义为10.射频参数n指出了信号能量随着到收发器距离增加而衰减的速率,其数值的大小取决于无线信号传播的环境。通过大量的比较和验证,得到实际应用场合环境因子EAF的大概值为13.5,A取45,n取3.5.依据式(1)可得到待定位标签到读写器的直线距离,r表示读写器与待定位标签之间的距离,即r=d.3个读写器的位置已知,分别是p1(x1,y1),p2(x2,y2),p3(x3,y3)。则待定位标签的坐标计算如式(2)所示:
三边定位的示意图如图4和图5
图4 三边定位的理想情况
图5 三边定位的实际情况
实验中将3个读写器放在坐标为(2,2),(2,4),(4,4)的位置上,分别依次对9个待定位标签进行定位实验。9个待定位标签放在4 mx4 m的正方形区域内,相邻的待定位标签相互之间相隔2 m,具体布置如图6所示。
图6 定位实验中读写器与标签放置的位置
分别对每个标签到读写器的RSSI值测试20次,并记录其数据,通过上述圆周定位算法对得到的RSSI值进行处理,得到各个待定位标签的坐标值,实验结果如图7所示。
图7 定位实验结果图
图7中圆圈表示标签的理论位置,星点表示标签的定位位置,每一个标签定位实验20次。从图中可以看出每个区域的20个星点都围绕在圆圈附近,说明定位位置相比于理论位置存在定位误差。分别对9个标签点的20次定位测试结果进行均方差统计,均方差的范围在0.236~0.541之间。
4 结束语
文中介绍了一种基于低功耗微控制器PIC16F877A和收发器CC2500的RFID局域定位系统设计方法,介绍了硬件模块系统的设计方法;利用基于序列号对时隙数运算的排序算法解决了多标签识别的防碰撞问题;利用圆周定位算法对待定位标签进行了局域定位。实验表明该设计方法及算法能够在多标签状态下完成一定精度的实时定位,验证了该局域定位方法的可行性。&tn=SE_hldp08010_vurs2xrp
- 射频识别(RFID)系统中的电子标签天线(11-05)
- 香港迪士尼与RFID技术碰撞出新火花(04-14)
- 电子标签:RFID技术应用与七大特点(05-12)
- 瑞风智能一卡通社区解决方案(05-15)
- 电子标签(RFID)技术在计量仓储管理中的应用前景分析(05-20)
- RFID射频识别技术在流程自动化中的意义(07-01)