微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 产品EMC辐射发射超标原因分析

产品EMC辐射发射超标原因分析

时间:02-23 来源:安规与电磁兼容 点击:

当GND作为信号回流通道时它就是GND,当作为静电泄放、屏蔽等用途时又是PGND。这种"一地两用"地理论基础是高频电路与电磁场和电磁波理论。对任何信号而言,信号回流走最低阻抗通道,不是物理上的最小路径。到了高频下,趋肤效应显著,即使一块金属板,正面和反面对高频都是两个通道。最低阻抗地原则和趋肤效应保证了即使GND接到结构上,高速信号地回流也不会到处都是,它始终在信号线的下方,与信号线互为耦合,环路电感达到最校这种做法是随着电子产品信号频率不断升高,电磁兼容要求日益严酷的背景下应运而生的。实现这个规划的难度在于这个方案考虑了高频但是对低频干扰存在风险,由于结构与GND在事实上连在一起,因此,结构必须良好接大地。否则不但不能泄放干扰,相反还会引导干扰损坏器件。实现该方案的第二个难度在于"接地"。单板的GND如果通过单点和结构相连,这不是EMC的"接地",这样做的后果是:高频干扰依然没有遏制,却给了低频干扰一个通道长驱直入。EMC接地必须多点把GND连接到结构,其次接地点之间地间距满足设备最高的主要工作频率波长的二十分之一。第三,不能完全指望螺钉接地,单板必须是金属化孔亮铜直接与结构平面"面-面"接触,并且压紧,螺钉可以用尼龙的,因为螺钉不是接地用的,螺钉达不到高频接地要求。落实这几条措施才是达到"GND接地"地目的,否则只是形式上的接地,事实上的"不良接地"。

这个方案的优点是GND上的干扰通过结构低阻抗通道泄放到大地,减小空间辐射幅度,有利于EMC。不足是增加接地系统的复杂性,并且结构成本有增加。

BGND是-48的回流线,同样原因,BGND要和结构外壳连接,单点连接即可。这个方案的结果是DC/DC两端的地通过结构短接在一起。用直流的眼光看,BGND、PGND、GND是等电位。为了达到DC/DC输入输出两端交流隔离的目的,一般要求BGND仅仅单点连接结构,并且只在设备电源入口。

对于采用-48V的单板,其-48V电源和地平面(走线)应当注意,在单板上,电源部分必须单独划分出去,要充分考虑不要和单板上面信号部分产生干扰。因为数字干扰很容易通过电源线辐射出去。   

经典案例—— -48V电源地受信号地耦合造成干扰

某基带框在RE测试时发现在频点32.76MHZ处辐射较高,准峰值为53.8dB超过CLASS A限值近4dB,结果如下图所示:

3

   

在定位过程中发现,主控板不插在槽位的时候辐射就消失,只要主控板一插上无论其它单板如何配置,该点得辐射均存在。过程中还发现在电源线上串上磁环,该点的辐射也消失。

为了确定辐射源的耦合途径,首先对背板和主控板的PCB进行了详细的审查,发现

1、cellbus时钟走线是采用两端匹配的方式,通过上拉电阻匹配到VTT层,原理图如下:

4

2、VTT和-48V、-48V_GND的电源平面有大面积的重合。

   

如果VTT滤波电容选择不合理,可能会把干扰传入VTT层,而VTT层与-48V电源层在主控板上有大面积的重合,-48V电源层很有可能被耦合到干扰。

最后经过定位确认正是VTT电源层受到CELLBUS的影响后,对-48V电源层耦合,然后通过电源线对外辐射造成超标。  

其它辐射超标的原因

辐射发射测试通不过的时候,很多测试人员喜欢从PCB上分析超标的原因。除了PCB布局、布线外,PCB上的一些电路设计对于辐射发射也会起到决定性的作用。

1  这种电路首推时钟线匹配电路。时钟信号的上升沿是决定对外辐射的一个重要因素,而匹配电路直接能够决定时钟的信号质量。譬如对于始端匹配的时钟电路,始端串连的电阻选择不当或者较小可能会造成时钟线上干扰较大。

2 去耦电路。电源管脚上面的去耦电路也是影响RE的一个重要因素。

3 其它不合理的电路。

经典案例—— PGND-GND跨接电容造成辐射超标

数通某产品在RE测试时,165MHz不满足Class A裕量要求,测试结果如下:

5   

查看单板布局,发现地分割处布局如下图:

6   

由于单板的总线频率为33MHz,165MHz恰为33MHz的5倍频,分析干扰可能是从GND耦合到PGND,通过网线驱动,从而导致辐射超标。从上图可以看到跨接电容不是两个管脚直接跨接在PGND和GND之间,而是从GND引线到PGND,然后再接跨接电容,因此怀疑是这段走线将干扰耦合到了PGND,使跨接电容没有起到作用。将该走线刮断,重新测试,测试结果如下:

7  

165Mhz频点基本消失,为了确认电容跨接在地分割上,是否和割断有同样的效果,把电容跨

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top