光伏电子系统电路保护设计
全球绿色能源需求推动了太阳能系统市场的强劲增长。虽然大量开发工作仍然把重点放在更高效的光伏(PV)能量转换方面,但对更加可靠、高效和高性价比的太阳能传送的需求也非常迫切。最近美国能源部(DOE)发布的“SunShot”行动计划更是突出了这方面的需求,这项计划旨在将公用事业规模的光伏能源系统总体成本削减约75%,使得它们与其它发电技术相比具有更强的成本优势。
前沿的电路设计
实用的光伏电子系统开发责任最终落在了电路设计师的肩上,包括那些开发完整太阳能系统的公司的设计师、向最终用户提供“交钥匙”系统的系统集成商的设计师以及各种太阳能子系统的设计师。其中许多设计师负责开发的电路主要用于优化光伏系统装置的性能和成本。这些工程师设计的电路一般是太阳能阵列、直流汇流箱或逆变器。
太阳能系统涉及相对较新的技术,因此光伏系统设计师在开发不同类型的电气和电子系统方面通常都拥有丰富的经验。举例来说,现在生产小型太阳能逆变器的公司以前可能主要是制造电源转换或UPS系统的。在这个新的位置,这些新的光伏系统设计师可能要求设计连接电网的1MW直流规模的太阳能电路。与开发其它直流电源系统甚至大功率交流应用时制定的相同任务相比,为这些高压太阳能应用设计电路和指定元件有很大的不同。
基本电路保护需求
为太阳能电路选择电路保护器件就是设计师可能遇到麻烦的一个地方。这些电路可能用于种类广泛的系统,范围可能从住宅级应用到大型工业设施甚至连接电网的太阳能工场。在所有这些系统中,有许多位置都需要电路保护器件(图1)。许多应用笔记为用于监视和控制的交流电源与数字通信系统提供了电路保护器件选择指南。这些领域已经超出了本文讨论的范围。本文主要讨论太阳能系统的直流侧电路设计,电路设计师在这里更可能遇到意料之外的问题。
图1:太阳能系统中需要使用电路保护器件的地方。
在典型的太阳能电子系统中,各个太阳能电池板或模块通过串联来提高输出电压,并提高效率。许多电池串需要并联使用以获得要求的输出电流和最终功率。根据系统规模和设计细节,并联电池串可以在电池串汇流箱中实现连接,而电池串汇流箱则在阵列汇流箱中实现并联,然后再连到逆变器(图2)。
图2:典型的太阳能电子系统。
在大多数情况下,多个电池串和阵列是在可操作的位置使用汇流箱连接在一起的。这些公共连接点有助于简化系统的装配和维护。不管在哪里使用,都有必要对电路进行分析,判断系统的可能故障电流(即短路电流),并与元器件的过流能力进行比较,然后再安装合适的电路保护器件,防止光伏模块、断开器、连线和走线设备受到损坏。
直流与交流电路保护
断路器经常是太阳能系统的交流侧电路首选的保护方案,而在直流侧使用相同的断路器也可能非常有吸引力。虽然断路器方案一般来说非常方便,但并不总是最佳方法。设计师必须仔细判断太阳能系统直流侧使用的电路保护器件是否是根据相关光伏标准设计的,并已经得到了美国保险商实验室(Underwriters Laboratories)(UL)或VDE等外部机构的标准测试和认证,从而确信器件能够在发生故障事件时正常动作。对电路保护器件来说中断直流电压比中断等效RMS交流电压困难得多。这里的根本原因是:交流电压在每个电压周期上有两次到达零电压点,这是影响电路保护器件安全中断电压并隔离故障电路的关键因素。
鉴于太阳能光伏电池板产生的是直流电能,因此对光伏电池板接收到的给定光能来说电流和电压是稳定的。由于存在高电压直流电流,典型的电路保护器件很难在太阳能系统中可能发生的各种工作条件中可靠地中断电路。在最坏情况下,不是为直流光伏系统设计和认证的电路保护器件可能突然发生故障,并造成设备损坏、起火甚至可以伤害人身安全。然而最常见的问题是,在典型的光伏系统过流条件下器件的工作速度不够快。
例如在某个电池串中,短路电流(ISC)可能不比正常电流大许多。典型的太阳能电池串在正常工作时的输出电流可能是4.2A,它的前向ISC约为4.5A。当与小型450VDC 10kW系统中的其它电池串组合在一起时,要求正常尺寸的10A过流保护器件(OCPD)在电池串故障事件发生时中断的短路电流大约是20A。这些高直流电压、低过载条件在设计高成本效益的OCPD时是一个艰巨的挑战,因为这些OCPD需要在适当的电压、电流和湿度范围内中断电路。
基于上述这些理由,最常见的第一道防线是熔丝形式的OCPD(图3)。天生是无源器件的熔丝在成本上要低于具有相同性能特征的断路器。这些光伏系统熔丝和它们
- 使用LabVIEW软件和NI PXI硬件为并网光伏(PV)设备快速开发监测系统(07-08)
- MCU控制的光伏电池测试仪设计(04-09)
- 光伏电池电气性能的评测(上)(05-20)
- 光伏电池电气性能的评测(06-05)
- 基于Labview的光伏发电数据监测系统的设计 (11-05)
- 通用光伏系统测试平台的设计(07-01)