基于容抗法的瞬时液膜厚度测量系统设计
2.2.1 C/U转换电路
图4为C/U转换电路。其中,SW-DIP4为四输入拨位开关,用来切换量程,采用LM358通用双运放作为电压放大器。Uin为正弦波,VD1-VD4为过压保护二极管,防止损坏电容探针传感器,其特点是负反馈电阻R1、R2、R3、R4的阻值依电容量程而定,并且以被测电容CX的容抗XC作为运放的输入电阻。
选择合适的量程档位,使U2B的电压增益与XC成反比,输出电压Uout与XC成正比,从而实现了C/U转换。
2.2.2 有源全波整流电路
整流元件用的是二极管,而二极管是一个非线性元件,特别是在小信号的情况下,这种非线性尤其严重。从理论上分析,二极管在放大器的反馈支路上,小信号先被运算放大器放大了近A0倍(开环增益),然后再送给二极管,这使二极管导通时的开启电压相对应地减少了A0倍,这样就可明显扩大线性范围,其非线性可得到一定的克服。所以设计中,采用有源整流方案,整流电路如图5所示。
整流过程:由于A2接成电压跟随器的形式,所以它的输出波形是正弦波形,该输出波形再通过二极管VD7之后只剩正半波,A1、VD5、VD6、R5、R6、R7组成负半波整流的电路形式,两者的输出信号相位相差正好是180°,则两者的迭加波形输出正好就是全波了。
为了得到对称的整流输出波形,需要R5=R6匹配,而R8=R9是为了减小放大器偏置电流的影响,它们的失配仅影响电路的平衡。在整流二极管的选择上,由于硅管的正向电阻大,所产生的正向压降大,使之在小信号的情况下,有一定的补偿,而且硅管的温度稳定性比较好。为此我们选用的是快速整流二极管1N4148。
2.2.3 二阶低通有源滤波电路
本系统测量的分层流和环状流界面波信号频率一般小于25Hz,而干扰的噪声频谱则分布在比较高的频段,故采用低频增益为1的二阶低通有源滤波器。原理图如图6所示。
滤波器的截止频率不宜选择太高,因截止频率愈低,愈能有效地抑制噪声干扰。KangKim(1992)研究认为:对于100kHz的信号,5kHz的截止频率不会对频率小于1kHz的任何信号引入明显的变形和扭曲。而分层流和环状流界面波信号频率一般小于25Hz,所以5kHz的截止频率对界面波没有影响。故本低通滤波器的截止频率选为5kHz,若取R10=R11=R,C1=2C2=2C,则可以求得截止频率:
根据式(5)即可确定滤波元件R和C的参数值。
3 测量电路特性
由于测量电路中放大元件(运放中的双极性三极管、场效应管,二级管等)特性曲线的非线性,即使电路工作在放大区内,输出波形仍难免出现或多或少的非线性失真。图7为测量电路的电路特性曲线。
由此特性曲线可知,要使电路工作在线性区,就要保证进入电路的信号在其线性工作区内。所以就对激励信号的频率和幅值有一定的要求。另外由于器件参数精度的影响和未知干扰的因素,需要通过理论分析和实验相结合的方法,来获取激励信号最恰当的幅值和频率。
4 实验论证
在虚拟电子工作平台上,对本测量系统做了仿真实验分析,对电路参数进行了相应修正。再经实验标定,对于高度为50mm的管道,当SW-DIP4切换到1M档时,探针标定结果比较理想。对探针进行标定后,分别选取实验条件:1)100*15:f=100kHz,VPP=15V:2)100*10:f=100kHz,VPP=10V;3)400*15:f=400kHz,VPP=10V三组情况进行实验,测得的三组数据结果如图8所示,横坐标为液膜厚度,纵坐标为探针无量纲电压输出。
从图8可以看出,条件2):100*10组中探针的无量纲输出与液膜厚度之间的线性度较好,标定曲线几乎可以用一直线来拟合。效果比较理想,经过精确标定后可以用于实验。
5 结论
本文的主要创新在于设计的电容探针测量电路能够快速、准确地测量液膜厚度。经实验论证,在对探针进行精确标定后,可以用于测量两相流的瞬时液膜厚度。该系统现己用于油气储运学科的多相流界面持液率测量实验,其线性度好、测量精度较高。
- 为什么示波器阻抗偏偏是1M和50欧?(06-02)
- 基于容抗法的测量电容电路方法介绍(03-04)
- 用容抗法测量电容的方法(12-08)
- 涂层测厚仪的分类以及测量原理(02-08)
- 激光外差玻璃厚度测量系统检测电路的设计(07-02)
- 瞬时通断测量仪测量方法(02-23)