使用DPO示波器测量开关电源中的功耗
校正夹具的测试点上。偏移校正夹具通过示波器的辅助输出或校准输出信号驱动。在需要时,偏移校正夹具也可以通过 外部来源驱动。功率分析软件的偏移校正功能将自动设置示波器,计算探测导致的传输延迟。然后,偏移校正功能使用示波器的偏移校正范围,针对偏移自动进行偏置。现在,测试设置准备就绪,可以进行精确测量。图2和图3说明了偏移校正前和偏移校正后的电流信号和电压信号。
计算非周期开关信号上的功率损耗
如果发射极或漏极接地,那么测量动态开关参数非常简单。但是,在浮动电压下,必须测量差分电压。为精确检定和测量差分开关信号,要求一个差分探头。霍尔效应电流探头允许在不中断电路的情况下,查看流经开关设备的电流。可以使用功率分析软件的自动偏移校正功能,消除探头引起的传输延迟。
对采集的数据测量开关设备的最小功率损耗、最大功率损耗和平均功率损耗,软件中的“开关损耗”功能将自动计算功率波形。然后,这些数据表示为开通损耗、截止损耗和功率损耗,如图4所示。这为分析设备上的功耗提供了有用的数据。知道开机和关机的功率损耗后,用户可以调节电压和电流转换,降低功率损耗。
在负荷变化期间,开关电源的控制环路会改变开关频率,驱动输出负荷。图5显示了开关负荷时的功率波形。注意,在负荷变化时,开关设备上的功率损耗也会变化。得到的功率波形具有非周期特点。分析非周期功率波形可能是一件繁琐的任务。但是,功率分析软件的高级测量功能会自动计算最小功率损耗、最大功率损耗和平均功率损耗,提供与开关设备有关的更多信息。
在负荷动态变化时分析功率损耗
在实际环境中,电源一直面临着动态负荷。图5显示了开关时发生的功率损耗在负荷变化期间也会变化。捕获整个负荷变化事件、检定开关损耗至关重要,以保证其不会达到设备极限。
今天,大多数设计人员使用拥有深内存(2 Mbyte)和高取样速率的示波器,以满足要求的分辨率捕获事件。但是,这种方法带来了一个挑战,需要从开关损耗点分析数量庞大的数据。功率分析软件的“HiPower Finder”消除了分析深内存数据的挑战,图6是典型结果。图7则更进一步显示了采集的数据中的开关事件数量及最大开关损耗和最小开关损耗。然后,通过输入感兴趣的某个范围,可以查看希望的开关损耗点。用户只需在范围内选择感兴趣的点,然后让“HiPower Finder”在深内存数据中定位这个点。光标将连接请求的区域。在定位点时,可以使用软件,缩放光标位置周围的区域,更详细地查看活动情况。这与前面提到的开关损耗功能相结合,可以迅速高效地分析开关设备的功耗。
计算磁性器件的功率损耗
降低功耗的另一种方式来自磁芯领域。从典型的AC/DC和DC/DC电路图中,电感器和变压器也会消耗功率,从而会影响功率效率,导致温度上升。
一般来说,会使用LCR仪表测试电感器,LCR仪表会生成正弦波测试信号。在开关式电源中,电感器会传送高电压、高电流开关信号,这些信号不是正弦曲线。结果,电源设计人员必需监测实地电源中的电感器或变压器行为。使用LCR仪表进行测试可能并能不反映实际环境情况。
监测磁芯行为的最有效方法是使用B-H曲线,它会迅速揭示电源中的电感器行为。功率分析软件可以在示波器上快速执行B-H分析,而不需昂贵的专用工具。
电感器和变压器在电源开机过程中及在稳定状态下拥有不同的行为。在过去,为了查看和分析B-H特点,设计人员必须采集信号,在PC上进一步进行分析。通过示波器软件,现在可以在示波器软件上直接执行B-H分析,瞬时查看电感器行为,如图8所示。
这种磁性分析功能还在实际电源环境中自动测量功率损耗和电感值。为推导出电感器或变压器上的磁损耗,用户只需测量原边和副边上的功率损耗。这些结果的差异在于磁芯上的功率损耗。此外,在无负荷条件下,主设备上的功率损耗是副边上的总功率损耗,包括磁芯损耗。这些测量可以揭示与功耗领域有关的信息。
总结
本文中介绍了功率测量和分析软件的主要特点,包括能够测量开关设备上的功率损耗、“HiPower Finder”功能和B-H分析,为在开关式电源上进行快速测量提供了工具。在使用数字荧光示波器时,该软件允许用户迅速定位感兴趣的功耗区域,在动态情况下查看功耗的行为特点。
- 利用TDS5000数字示波器完成视频信号基本测量(01-18)
- 数字荧光示波器结构融合模拟示波器和数字示波器的优势(03-03)
- 利用FastFrame分段存储技术改善数据捕获质量(01-29)
- TEK工程师答疑:简化高速串行数据调试验证和一致性测试 -问答精选(07-08)
- TEK工程师答疑:简化高速串行数据调试验证和一致性测试 -问答精选(二)(07-08)
- TEK工程师答疑:简化高速串行数据调试验证和一致性测试 -问答精选(三)(07-08)