微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 测试工程师不可不知的七大秘诀

测试工程师不可不知的七大秘诀

时间:08-22 来源:互联网 点击:

 众所周知,测试工程师在现场作业的时候总会遇到各种各样的问题,那么出现问题该如何解决或者说该如何减少一些原本可以避免的错误从而提升测量质量 呢?本文根据测试工程师们的经验总结出七个宝贵经验,供大家参考。总的来说,这7个经验分为两大类:尽量扩大测量范围和在探测中优化信号完整性。具体细分 如下所示:

尽量扩大测量动态范围在探测中优化信号完整性
1) 通过计算平均值提高测量分辨率;5)使用差分探头进行安全、精确的浮置测量;
2) 使用高分辨率采集提高测量分辨率;6) 避免探测耦合了辐射功率的附件;
3) 使用交流耦合去除直流偏置;7) 选择避开示波器最灵敏设置的探头;
4) 使用示波器和探头限制带宽;

秘诀一: 通过计算平均值提高测量分辨率

在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。

测试工程师不可不知的七大秘诀

测试工程师不可不知的七大秘诀

求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。垂直分辨率每增加一位,需要计算多少平均值?答案是每计算 4 个样本平均值,便可将垂直分辨率增加 1 位。原理如下:

· 增加的位数 = 0.5 log2 N

· N = 计算平均值的样本数

· 例如,对 16 个样本求平均值,垂直分辨率将增加:

· 位数 = 0.5 log2 16 = 2

· 因此,有效的垂直分辨率为 8 + 2 = 10 位。

这种算法在垂直分辨率为 12 位时效果最好,因为再继续增加下去,其他因数(例如示波器的垂直增益或偏置精度)将起到决定性作用。平均模式的优点是,它对示波器的实时带宽没有任何限制。缺点是它要求使用重复性信号,并会降低波形更新速率。

秘诀二: 使用高分辨率采集提高测量分辨率

降低噪声的第 2 个方法是高分辨率模式,它不需要使用重复信号。Agilent InfiniiVision 3000 X 系列等现代化示波器在正常采集模式下可提供 8 位垂直分辨率(与大多数其他数字化仪类似)。然而与平均模式一样,高分辨率模式也只能达到 12 位的垂直分辨率。

测试工程师不可不知的七大秘诀

高分辨率模式是对同一次采集的连续点求平均值,而不是对某个时间段内多次采集的点求平均值。在高分辨率模式中,您不能像在平均模式中那样,直接控制平均值数量。垂直分辨率位数的增加由示波器的时间/格设置决定。

当在较慢时基范围状态下工作时,示波器会连续过滤相继的数据点,并将过滤结果显示到显示屏上。增加屏幕上数据的存储器深度,也会同时增加进行平均值计 算的点数。高分辨率模式下,扫描速度越快,在屏幕上捕获的点数就越少,因此效果就越差。相反,扫描速度越慢,在屏幕上捕获的点数就越多,效果也就越显著。

秘诀三: 使用交流耦合,去除直流偏置

如果您正重点研究信号的纹波,可能并不关心其直流偏置。通常,纹波和噪声与电源电压相比是极小的。如果您使用示波器的动态范围对这种偏置进行定量测 量,那么在遇到更微小的信号细节时,可能无法进行深入分析。将示波器的耦合设置为“交流”,将会从测量结果中去除直流偏置,最大限度提高测量的线性度和动 态范围。

秘诀四: 使用示波器和探头限制带宽

这种降低噪声、增加动态范围的方法虽然简单,但常常被忽视。电源信号内容与示波器的标称带宽相比往往低得多(kHz 至几十 MHz 级别)。多余的带宽不会传输任何信号信息,只会给测量带来额外的噪声。大多数示波器使用专用的硬件滤波器来解决这个问题DD通常是 20 至 25 MHz 低通滤波器。硬件滤波器与软件滤波器相比的一个优势是,它不会影响示波器的更新速率。

另一种方法是使用探头来限制带宽。测量链的带宽受其“最弱一环”的限制。500 MHz 示波器配备 10 MHz 探头,其带宽将会是 10 MHz。安捷伦提供了多种无源、有源的电流和差分探头,总有一款探头的带宽会适合您的特殊测量。

秘诀五: 使用差分探头进行安全、精确的浮置测量

示波器探头上的接地引线通过 BNC 连接器的外壳连接到机箱。出于安全考虑,示波器的机箱通过电源线的接地插头连接到接地参考面。示波器与电源的接地方式不同,两者之间可能产生冲突。许多令 人感兴趣的信号是以电势而不是以接地作为参考的(浮置)。电源设计人员采用各种方法来克服这一测量限制。

最常用的方法是,通过削除电源线的防护接地插头,或在电源线路中使用隔离变压器,使示波器“浮置”(隔离)。T这种实践

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top