微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > UHF RFID模拟基带中的信道选择滤波器设计

UHF RFID模拟基带中的信道选择滤波器设计

时间:08-23 来源:互联网 点击:

计时都是放在第二级的输出端, 用来稳定运放的输出电压[ 8]。本文为了满足在所有工艺角中运算放大器的性能, 在运放的第一级也添加了共模反馈电路, 用来稳定第一级的输出电平。本文设计的两种不同结构的共模反馈电路如图4( b)、4( c)所示。

 图5给出了采用FBDDA构造的二阶Chebyshev低通滤波器结构, 图6给出了FBDDA构造的六阶级联Chebyshev低通滤波器结构(C2 和C3、C6 和C7、C10和C11间接参考电平1. 6 V)。

图5 全差分二阶低通切比雪夫滤波器。

图6 全差分六阶切比雪夫滤波器。

为了实现截止频率的切换并防止由电阻电容误差引起的频偏, 使用MOS开关控制接入电路中电阻的大小, 电容为固定的3pf。在电路中通过译码器利用数字信号控制开关的通断, 实现了截止频率在300 kH z~ 1. 3MH z中可调, 表1为经过优化后信道选择滤波器的电阻取值方案。

表1 经过优化后电阻取值表

2 版图设计与仿真结果

本文的六阶Chebyshev低通滤波器采用IBM 0.18 Lm工艺进行设计, 仿真。图7是对滤波器的版图, 面积1 600 Lm @400 Lm。

图7 六阶Chebyshev低通滤波器版图

图8为截止频率设为900 kH z时滤波器的交流、噪声及群时延特性。从图8( a)中可以看到, 滤波器的- 3 dB带宽在900 kHz左右, 带内增益稳定在0 dB, 在1. 8MH z频率处具有大于49 dB的幅度衰减, 满足信道选择滤波器的设计指标; 从图8 ( b)可以看出, 滤波器在整个通带内的群时延在1 L s左右, 变化量不超过0. 5 L s; 在图8( c)中, 10 kH z频率处的输入噪声电压为44 nV /√ Hz, 1MHz频率处的输入噪声电压为80 nV / √H z, 通带内等效噪声系数为42 dB, 满足了UHF RFID阅读器系统的要求。

图8 信道选择滤波器的特性

图9 是全平衡差动放大器开环情况的幅频、相频特性。从仿真的结果可以看出运放的增益为71 dB, GBW为96MH z, 外接2 pF电容负载时的相位裕度为72. 7b, 可以满足闭环稳定工作的条件, 不会出现振荡的情况。图10 是全平衡差动放大器的噪声特性, 可以计算得到等效噪声系数约为16 dB。

图9 FBDDA 开环幅频、相频特性

图10 FBDDA噪声特性

表2总结了Chebyshev信道选择低通滤波器在27 e 、TT 条件下相关性能的仿真结果。对其它工艺角及温度的仿真结果也均达到系统的要求。

表2 信道选择滤波器的相关性能仿真结果

3 结论

本文介绍了一种用在UHF RFID模拟基带中的信道选择滤波器, 详细描述了它的工作原理和电路结构, 给出了具体的设计过程, 获得了比较理想的噪声特性和线性度。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top