微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 热式质量流量计两种工作原理比较

热式质量流量计两种工作原理比较

时间:10-11 来源:互联网 点击:


传感器结构示意图

当流体流速为零,即当流体处于静止状态时,表面附近的流线场及主要由此产生的温度场相对于热源呈对称分布。由于结构上的对称性,通过基片热传导进行的热交换相对于热源始终是对称的。此时感温芯片的铂电阻温度满足TS1=TS2,即温差:ΔT21=TS2-TS1=0。

当流体流动时,流体和铂电阻之间主要为对流换热,由于局部对流换热系数的不同,基片表面附近的流线场及相应的温度场相对于中心热源的分布发生变化,导致倾向性的不对称分布。根据热边界层理论,可知,此时上游温度检测芯片表面冷却速率高于下游芯片表面,即铂电阻S1的换热系数大于S2是换热系数,所以TS2>TS1,温差温度差:ΔT21=TS2-TS1>0。

且ΔT21的值随流体流速的增大而增大。如果改变流体流向,ΔT21亦相应改变符号。

利用热平衡方程可以计算出因对流引起的芯片表面的温度再分布,获得温度差与流速的关系式。

3 两种方案的比较和选择

恒温差原理的气体质量流量计的最大优点是比恒功率式气体质量流量计响应的时间快。因为恒功率式测量值从实际温度变化获得,测量管质量和检测元件质量的热惯性会降低响应速度;恒温差式的温度分布没有变化,不受检测元件等质量热惯性影响。

对于恒功率式气体质量流量计,它采用一个恒定的功率对铂电阻加热,较之恒温差式气体质量流量计有如下优点:

(1)恒功率式流量计的最大可测量流量较大,随着介质流量的增加,被加热的铂热电阻的热量被迅速带走。对于恒温差式流量计,它要求对被加热电阻的能量快速加大才能保证恒定的温差。但是由于能量的增大受到电路本身功率的影响以及被加热的铂电阻最大允许电流的影响,其最大值受到限制。而恒功率型的流量测量容易实现,通常恒功率原理的流量计对空气的最大可测量速度为488m/s,而恒温差原理的流量计最大可测速度只能达到38m/s。

(2)恒功率流量计不容易受到脏湿介质的影响。恒温差流量计为了使其对温度快速响应和保持恒定的温差,一般铂电阻均做得比较细,而恒功率流量计却可以做得粗(各生产厂不一样尺寸也不一样)。这样对于脏湿介质测量时,脏湿物质对铂电阻可能产生短暂的附着物(任何生产厂都对铂电阻采用了抛光处理,长期附着物的产生是不大容易的)。对于较细的铂电阻,其附着物对加热铂电阻的散热会产生较大的影响,严重时使其测量精度大大降低。恒功率对脏湿介质的测量会好很多。

(3)恒温差式流量计不对温度的变化进行补偿,恒功率流量计却能对温度变化的全范围内进行自动补偿。众所周知,热流量和平衡常数是受温度的变化而变化的,一般而言只在30℃的范围内为常数,当测量的气体温度范围超过这一数值时,气体的热流量系数和平衡常数均会发生变化。受电路设计的影响,目前市场上所有的恒温差流量计均没有对温度进行补偿,而FCI公司采用恒功率方式的流量计均能对全温度变化范围内的热流量系数和平衡常数进行自动补偿。而介质的温度变化范围受气候或别的原因的影响是很难保持恒定的。

(4)恒功率与恒温差在耐高温方面有着显著的差异。目前而言,恒功率的最高耐温可以做到454℃,而恒温差的流量计一般都在260℃以内,这对于测量过热蒸汽而言,其适应性有很大的差别。

4 结语

从上述几个方面的比较可看出,恒功率热式气体质量计比恒温差热式气体质量流量计有着显著的优越性。在现实生产中,恒温差式响应速度快,容易实现,所以目前大多数产品均采用该原理。但恒功率式质量流量计与之相比,有着非常明显的优势,已经成为人们进一步研究和发展方向。

参考文献
[1] 杨辉华,简捷.热式质量流量计特性曲线及其拟合方法的研究[J].华工自动化仪表,1996,23(6).
[2] 罗晶,陈平.热式质量流量计测量电路设计[J].仪器技术与传感器,2004,(10).
[3] 赵梦恋,吴晓波,严晓浪.一种基于温差测量原理工作的集成型流量传感器[J].传感器技术,2004,(1).(end)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top