采用MCU控制的蓝牙无线充电系统设计
计和无线接收部分软件设计。
无线发送部分软件设计主要完成:系统初始化、检测按键、控制蓝牙模块收发数据、控制AD9851工作等,如图3所示。
无线接收部分软件设计主要完成:系统初始化,控制蓝牙收发数据,实时检测电压电流数据,控制TP4056工作和LCD1602显示,如图4所示。
图3 无线发送部分流程图
图4 无线接收部分流程图
4 磁耦合谐振式无线充电系统传输特性的研究
对于磁耦合谐振式无线能量传输电路,传输功率与效率受以下参数的影响:驱动源电压,传输距离,以及线圈直径、匝数和线径等参数。下面对做好的电路进行测试,研究传输效率与这些影响因素的关系。
4.1 驱动信号频率与传输效率的关系
该 研究中线圈距离为6 mm,两线圈电感值为16 μH,直径均55 mm,线圈固有频率为126 kHz。测试过程以5 kHz为单位,从80 kHz开始增大驱动频率,通过测量数据计算得出传输效率,得到如图5所示的关系曲线。从关系曲线中可以看出当驱动信号频率为125 kHz时,传输效率最高,此时与线圈固有频率接近。以上数据证明了磁耦合谐振式无线充电电路谐振频率与固有频率之间的关系,即两者近似相等时电路能量传输 能力最强。
图5 驱动信号频率与传输效率关系曲线
4.2 两线圈距离与传输效率的关系
测试过程中改变两线圈的距离,其他参数保持不变,测量出数据计算传输效率,得到如图6所示的关系曲线。在距离D 近的时候传输效率高,当D≤11 mm时效率大于50%,随着距离增大,传输效率下降,与理论相吻合。
图6 两线圈距离与传输效率的关系
4.3 接收端固有频率不变,电感值变化(发射端不变)与传输效率的关系
改变接收端的电感值和电容值,但固有频率保持不变为125 kHz,其他参数也都保持不变,测量输出电压和电流,计算出传输效率,得到如图7所示的关系曲线,图中还有一组数据为线圈中心加了铁氧体之后。
图7 电感值变化与传输效率的关系
由关系曲线可以看出,随着电感值的增大,传输效率增加,所以增加电感值也是增大效率的一种方法,但是电感值不可以无限制的增加,增大到一定的程度输入功率将不能带动负载。在线圈中加了铁氧体后效率增大,但并不明显,在实际运用中可以根据实际要求选择是否添加磁性物质。
4.4 接收端电感值不变,线圈直径变化与传输效率关系
线圈直径是影响电感参数的一个重要因素,测试中改变线圈直径,但保持固有频率不变进行测试,测试结果如表1所示,从数据中可以看出直径增大,传输效率提高,但线圈直径太大,磁感线会相互抵消,效率会下降。
5 结语
对于MSP430F149 单片机和磁耦合谐振模块设计的蓝牙无线充电系统进行功能验证,当D=6 mm,传输效率达到57%,可实现对1 200 mA●h 的锂电池充电。并且该设计具有如下特点:
(1)以电磁谐振技术取代传统充电线传输电能,使充电更加的方便快捷;
(2)利用蓝牙技术,实现一对多或是多对多匹配连接;
(3)具有充电状态提示、充电可控和电池充满后自动断电的功能。
蓝牙 无线充电 匹配 线圈 无线 单片机 MCU 相关文章:
- 基于蓝牙芯片的无线通信模块设计与开发(02-03)
- 蓝牙技术在组建无线局域网中的应用(06-12)
- 移动支付2.4 GHz频段Zigaee、蓝牙及WiFi三标准比较(06-06)
- 蓝牙技术未来发展更加注重低功耗和互联性(12-22)
- 低功耗蓝牙与专有射频技术在HID的应用概述(10-06)
- 基于BlueCore4-ROM CSP的手机蓝牙系统设计(02-14)