微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 生物电阻抗测量系统中弱信号检测技术研究--弱信号检测调理单元设计与实现(一)

生物电阻抗测量系统中弱信号检测技术研究--弱信号检测调理单元设计与实现(一)

时间:10-18 来源:互联网 点击:

阻抗匹配电路设计是弱信号检测预处理的前端设计,是整个系统的最前端。通过阻抗匹配电路进行初步的调理,保证前端输入的生物信号的完整性。由于前端电源激励信号的输出阻抗的不确定性,不能保证其和信号处理端信号传输阻抗的50Ω相匹配,因此必须在前端加入一个阻抗匹配电路使其输入阻抗与电源激励信号的输出阻抗相匹配,实现输出端与信号处理端的信号传输阻抗相匹配。

4.2.1.1衰减电路分析

典型的衰减匹配电路有π型电路和T型电路,如图4.2所示。为保持输入输出的阻抗相等,电路呈对称形式,因此,不管是π型还是T型衰减电路,R2和R3都取相同的值。但本系统中输入阻抗不确定,而π型电路和T型电路时针对具有确定输入阻抗的系统而设计的,因此不能使用这两种典型电路。

基于生物电阻抗测量系统特性考虑,衰减电路设计要有灵活性,能匹配一定范围内的输入阻抗。设计时考虑:1、加入0电阻以备工程中调节;2、适当增加冗余布线,以悬空不焊接的方式冗余备用;3、加入适当的电容,以作为在输入频率变高时,电阻阻抗变化的补偿。

4.2.1.2衰减电路设计

为解决常用衰减电路难以匹配不确定性输入阻抗的问题,基于生物电特性和激励信号考虑,本文设计的衰减电路如图4.3所示。

根据激励信号的特点,衰减网络的输入阻抗要求达到1M.本文设计的衰减电路有一定的灵活性,在电阻R 1后端串一个0的电阻R 2,以方便在工程中根据实际情况调节。由于实际中电阻都有一定的寄生电容,为保证衰减通道的频带平坦性,电阻R 1和R 3上分别并上一个补偿电容C 1和C 2。

该设计有如下推导:由于图中C 3、R 4、C 4、R 5都不焊接,故该电路等效于C 1 //R 1串上C 2 //R 3。由频域分析,电容阻抗为1/ jωC.于是有:

从(4.2)中可以看出,输出与输入保持同频同相,这样就达到了衰减要求和频带平坦性的要求。

取R 3 =400k欧,则C 2 =18pF

由于R3C2 =R1C1

所以R 1 =600k欧姆,C 1 =12pF

4.2.2射随模块

由于电源激励信号的信号强度非常微弱,容易受到噪声的污染,因此增加一级射随电路保证信号具有较强的驱动能力,以保证不因为驱动能力弱而使信号被衰减。

4.2.2.1射随电路设计分析

射随电路主要功能是保持输入信号的幅频特性,即保持信号幅度和频率不变。但是在射随前端须保证信号的完整性且信号具有较小的衰减,在射随的输出端与输入端保持幅度和频率的一致并且具有较强的驱动能力,因此射随电路必须具有较高的输入阻抗和较小的输出阻抗。射随电路的设计,是基于以下考虑设计的:

1.完成射随功能。使输入信号通过电路保持信号完整性。
2.确保性能指标完全实现。系统设计的根本依据是系统所要达到的性能指标,因此系统性能指标需首先得到保证。如输入阻抗大于1M等。
3.模块设计的灵活性。电源激励信号非常微弱,而且动态范围较大。场效应放大电路模块设计需具有适应动态范围大的特点。
4.安全可靠性。有足够的抗干扰能力,要保证在规定的工作环境下,系统能稳定,可靠地工作。保证系统精度能符合要求。
5.信号频率考虑。射随电路的频带必须大于250MHz. 6.经济性原则。在遵循以上设计原则的条件下,在器件选择上尽量以完成相同的功能的基础上选择那些价格相对来说比较低一些的器件为标准,这样可以有效地降低生产成本,为产品进入市场打下良好的基础。

4.2.2.2 ADA4817芯片的应用

ADA4817是一款稳定的单位增益放大器,它提供超高速电压反馈,场效应输入。该放大器能获得超低噪声和高输入阻抗。ADA4817输出0.1Vpp时,信号有效带宽1050MHz,满足频带要求。

ADA4817从模拟设备上引出一条新的低失真引出线,相比于传统的引出线,该低失真引出线有两个优势。一是能改善二次谐波失真性能,它能物理隔离放大器的输入管脚和负电接入管脚电路。二是布局简单,它能提高倒相输入,允许紧密的布局和轻易的布局,帮助减小寄生增益和稳定性增长。

宽泛的带宽和较低的噪声使之成为放大器的理想选择,特别是在高速采集信号检测预处理的应用。

ADA4817各管脚描述如表4.1所示:



ADA4817各参数的最大绝对定额值如表4.2所示:

4.2.2.3射随放大电路设计

场效应放大器广泛用于数据采集系统,射随电路采用ADA4817芯片。本文设计该电路主要完成射随电路功能。

射随电路设计方案如图4.4所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top