微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹10闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛濠傛健閺屻劑寮撮悙娴嬪亾閸濄儳涓嶉柡宥庡幗閻撴洘銇勯幇鍓佺ɑ缂佲偓閳ь剛绱掗悙顒€鍔ら柣蹇旂箞閸╃偤骞嬮敂钘変汗闁诲骸婀辨慨鎾夊┑鍫㈢=濞达絽鎼宀勬煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹
首页 > 测试测量 > 测试测量技术文库 > 基于LabVIEW机器视觉的微小位移动态测量

基于LabVIEW机器视觉的微小位移动态测量

时间:12-23 来源:互联网 点击:
前言

测量物体的微小位移在许多方面如数控机床的精确加工等,有广泛的应用。目前测量物体的微小位移已经发展了多种方法:激光位移传感器测量法、电容位移传感器测量法等。本文实现了一种基于LabVIEW机器视觉软件平台和读数显微镜以及USB摄像头测量微小位移的系统。该系统成本低,操作方便,并实现了计算机的实时动态测量。由美国NI公司推出的LabVIEW是目前最流行、应用最广、发展最快和功能最强的图形化数据软件[1-4]。NI公司推出的机器视觉平台是专门的图像处理软件平台。本测量系统采用LabVIEW和机器视觉软件平台编程控制USB摄像头采集读数显微镜的物体图像移动,通过计算机判断物体图像的像素移动来计算物体移动的微小位移。整个实验过程中,图像采集和数据处理都是通过LabVIEW软件编程实现。由于摄像头的帧速为30帧/秒,因此可实现动态测量、÷像o实时显示结果并将数据实时保存。

1 实验原理和思路

通过读数显微镜的放大作用把物体发生的微小位移放大,利用摄像头拍摄物体放大的图像,用计算机对图像进行二值化处理,通过移动前后图像质心位置像素点的变化可计算出物体位移的变化。图1是实验原理和测量流程图。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...
图1 微小位移测量实验原理图

实验思路如下:读数显微镜底座的LED发射出均匀稳定的光,照射到显微镜载物台的玻璃片上。物体的移动牵引显微镜物镜下的细丝产生微小位移,这里,细丝的位移就是物体的位移。显微镜对细丝成一个清晰放大的像,被置于目镜上的USB摄像头采集到图像并将图像传到计算机进行处理。计算机对采集到的图像先进行二值化处理,滤去背景图像的影响,计算出图像质心的位置。通过比较前后图像质心的位置坐标,可计算出质心移动的像素点。实验中通过多次测量,先得出图像单位像素点和物体实际位移的比例系数。实际测量物体的位移时,通过计算出图像质心像素点的变化,再乘以单位像素点的变化与物体实际位移的比例系数,计算出物体的实际位移。

实验中使用的实验仪器和装置包括:读数显微镜(型号为:JCD-Ⅲ,上海光学仪器厂)。实验中显微镜的目镜×10,物镜×10,对细丝的放大倍数为100倍。摄像头:普通罗技快看高手版(罗技公司),摄像头的分辩率 320×240,30万像素,拍摄帧速为30帧/秒。细丝为精确加工的黑色细丝,直径约为 。

2 基于LabVIEW和视觉开发平台测量系统的程序设计

2.1 程序设计的思路

实验通过采用LabVIEW视觉软件平台编程控制USB摄像头采集显微镜中放大的物体图像。通过对图像进行计算和处理,计算出移动物体图像的质心像素的位置变化来测量物体的微小位移。在LabVIEW的机器编程中,采用编程控制USB摄像头的采集。为了滤去背景图像和噪音的影响,采集到的图像需经过二值化处理。通过设定门限值,将图像像素值高于门限值的设为最高像素值,低于门限值的置零,获得细丝的二值化图像。调用视觉开发平台中的专门模块计算出细丝图像质心的像素位置[5-6],进一步计算出移动前后质心像素位置变化的像素点个数。测量时,通过计算出图像质心移动的像素点个数乘以单位像素点的变化与实际距离的比例系数,求得物体移动的实际距离。

2.2 测量程序显示界面的设计

USB 摄像头将被测物体所成像变为数字图像输入计算机,由LabVIEW软件平台调用并显示。考虑到显示的方便,测量程序设为两个界面显示。图2是测量程序的实时同步测量界面。“图像跟踪”实时显示摄像头拍摄到的显微镜成的细丝图像,直观显示图像移动,图中黑色物体为细丝的图像;“结果”和“位移记录”实时显示物体位移变化;点击“开始测量”键,计算机启动摄像头开始测量;点击“复位”键重新测量。考虑到摄像头开始工作时一般都不稳定,设置计算机启动摄像头开始测量后采集到的前15帧图像不予采用。为了方便显示,设置图像采集在蓝色进度条走完之后开始测量。通过这个界面,能够直观观测到物体的图像和位移。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...
图2 同步测量显示界面

2.3 测量的LabVIEW程序设计

在LabVIEW 中,由于将调用函数模块化了,因此调用USB摄像头非常简单。图3是LabVIEW调用USB摄像头采集图像的编程。调用的过程如下:调用摄像头①IMAQ Create.vi —> ②IMAQ USB Grab Setup.vi —> ③IMAQ USB Grab Acquire.vi —>④IMAQ USB Close.vi,该过程为静态拍摄一郑加上一个循环⑥While Loop,通过⑤Wait Until Next ms Multiple控制While Loop每隔多少毫秒触发一次(默认值为33.3毫秒,也就是每秒三十30帧),输出⑦Imag

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top