一种基于ADS的雷达接收机系统设计方法
地看到接收机在VGA增益最大和最小的情况下整机增益的分配情况。
由图4还可以看出,接收机前端一般要有AGC的加入,以便动态调节输入信号的输入功率,使之匹配ADC。
图5所示为接收机功率增益预算,从图中可以看出功率增益在各个器件上的分配情况。
射频模块的优化选择
在系统结构的优化选择中,已经得到最优的系统结构。而系统性能指标无法直接应用于结构规划和模块设计,需要把这些指标转换为能直接反映射频模块性能的参数,如噪声系数、线性度、稳定性等,因此可以分配具体的性能参数到各射频模块中去。
射频模块一般都可以分为放大、滤波、混频等模块,以放大器为例,其实际的行为模型还必须考虑各种非线性因素。
噪声。可以认为是与有用信号不相关的随机干扰,主要有热噪声、散粒噪声和闪烁噪声三种类型。接收机的噪声系数主要取决于它的前端电路,若无高频放大器,主要由混频电路决定。
线性度。用来衡量线性度的指标主要有三阶交调、二阶交调和1dB压缩点。
稳定性。因晶体管都存在着内部反馈,当反馈量达到一定程度时,将会引起放大器稳定性变坏而导致自激。
这些非线性因素不是孤立的,而是与输入信号叠加在一起共同组成系统的输入输出。用Sideal、Sn、Sl、Ss分别表示模块的理想信号、噪声、线性度、稳定性,则其输入、输出信号可以分别表示为
从而可以得到实际器件的行为模型,并结合ADS仿真分析其性能。
器件选型
在此只对一些典型器件如射频滤波器、低噪声放大器等进行仿真、分析。
滤波器
由于是对天线接收下来的微弱射频信号直接滤波,因此要求射频滤波器的插损和带内波动等都尽可能小。为了满足系统性能要求和提高接收机设备的动态范围,通常需要几组滤波器,以减少干扰信号的数量和幅度,以及进入接收机的噪声。同时为了覆盖整个频段,采用电调谐滤波器是必然趋势。电调谐滤波器是通过改变滤波网络中的可变电容,来实现网络频率响应的变化。利用电压改变可变电容的容量,达到所需要的频率响应。本设计中,每个频段可以分别用一个电调谐滤波器来覆盖。
多个电调谐滤波器的连接如图6所示,其输入信号为天线接收下来的射频信号,输出信号为经过电调谐滤波器选择的信号,可以满足对滤波器(包括射频滤波器和中频滤波器)的超宽带要求。因此,利用电子开关和信号处理器的控制端口,就可以把滤波器置于带内任意感兴趣的频段。
低噪声放大器
根据所要求的灵敏度、带通滤波器插损和ADC输入电平的要求,设计放大器的增益和匹配等问题。在搭建电路时尤其要注意电源旁路、寄生电容和外围器件的选择对充分发挥低噪声放大器性能的影响。本文可以利用ADS软件,按照参数要求,自行设计一个低噪声放大器,并对其参数进行优化、仿真,得到如图7所示的仿真结果。从结果可以看出,此低噪声放大器基本满足设计要求,可用于系统设计中。接着可以根据软件设计的结果绘制电路版图,并加工成电路板。最后对加工好的电路进行调试,使其满足设计要求,此项工作将在以后完成。
把上述设计方法与传统的基带等效系统优化方法结合起来,就形成了一个自上而下、能全面评价系统结构性能的设计流程。
结语
本文在常规接收机设计方法的基础上,利用ADS软件,提出了一种高效的系统设计方法。经过验证,大大缩短了雷达接收机系统的开发周期,并且目前已逐步在笔者所在课题组项目中应用。
参考文献:
[1] 支传德,杨华中,汪蕙. 射频前端接收机频率规划[J]. 电路与系统学报, 2006(8):21-25
[2] Ramanathan R, Patridge C. Next Generation(XG) Architecture and Protocol Development(XAP).AFRL-IF-RS-TR-2005-281 Final Technical Report.2005(8)
[3] 杨小牛, 楼才义, 徐建良. 软件无线电原理与应用[M]. 北京: 电子工业出版社, 2001
[4] 龚广伟. 无线接收机前端设计及多通道校准技术研究[D]. 国防科技大学硕士学位论文, 2008
[5] 高峻. 无线通信射频接收前端研究与设计[D]. 西南交通大学工学硕士学位论文, 2006