便携式热工仪表检定仪的设计原理及示值误差检定方法
一、设计原理
1.检定仪的基本构成
该仪器采用大规模集成电路7135,它是一种双积分式转换器,配以译码器、数码显示器、驱动器及电阻、电容等元件,可组成满量程为2V的数字电压表,再配以高精度的运算放大器、毫伏信号发生器、双稳触发器、继电器等,就可构成自动转换量程的热工仪表检定仪。原理如图1所示。
图1
2.双积分式A/D转换器工作原理
双积分式A/D转换器通过二次积分,将被测电压变成一个时间间隔,其持续时间与被测电压的平均值成正比。如果用计数器测量此时间间隔,就可在显示器上直接读出被测电压的平均值。原理如图2所示。
图2
输入被测电压UX经输入电路作用到电子开关,控制器将电子开关接到UX端,以UX作用到积分器,先对UX积分,这个过程称为采样阶段。由于逻辑控制电路发出采样指令的作用,使采样时间T1是固定值,同时,控制器使门开启,时钟脉冲通入计数器,使计数器对时钟脉冲进行计数。当计数器计满时,输出溢出脉冲作用到控制器,然后对标准电压UR进行反向积分。当积分器输出为零电平时,检零比较器输出信号作用到控制器,使门关闭,这时计数器所计时钟脉冲就是被测电压的数字量。对UR的积分过程称为比较阶段,比较时间为T2。工作波形如图3所示。
图3
设积分器从零电平开始对UX积分,积分器输出为
式中:——UX在T1时间内的平均值。
经过一个固定时间T1后,计数器达到其满量限N1值,采样周期结束,积分器由U01开始,对UR反面积分,直到输出为零时停止,这时积分器输出为:
由于UR为常数,因此
将式(1)代入式(3)得
所以
由式(5)可见T2与UX成正比。
设时钟脉冲频率为f0,则
(N1、N2为脉冲数) (7)
将式(6)、式(7)代入式(5)则有:
考虑工频为50Hz,通常取T1=20ms或它的整数倍,f0是固定的钟频,所以N1为一个常数。基准电压UR也为一个恒定量,因而只要知道计数器在比较阶段所计脉冲数N2,就可以准确地得到被测电压UX的平均值。
因为是对平均值测量而不是对瞬时值进行测量,可将对称的串模干扰平均抵消掉,所以抗干扰能力很强。只要积分采样时间T1为干扰信号周期的整数倍,就有极高的串模抑制比。这种原理的数字电压表准确度高,稳定性好,其主要原因是UX和UR共用一个积分器及钟频,式(8)中不存在积分元件R和C变化的影响,降低了对积分器的要求。此外,测量比较时间T2的标准脉冲不需要长时间的稳定性。因为经V/T变换后的时间T2正比于T1,若T1有变化,T2也随之变化,只要两者变化速率相同,则对测量结果不产生误差。
为了解决该仪器的稳定性和末尾数跳字的问题,采用了高质量的积分电容,准确度高的电阻。变压器的初、次级进行有效地屏蔽和可靠的分离,在信号的输入端加上RC滤波器、采用带有静电屏蔽的仪器外壳对整个电子线路部分进行有效屏蔽等。这些都可靠保证了该仪器的测量准确度和稳定性。
二、主要技术数据
1.量程
(1)量程1:(-3.000~19.999)mV;
(2)量程2:(18.00~199.99)mV;
量程自动转换。
2.准确度
本检定仪在通电预热调零后,在温度(20±5)℃范围内不低于下述规定:
(1)量程1:±(0.05%摇读数+5个字) (9)
(2)量程2:±(0.05%摇读数+2个字) (10)
三、使用中需要说明的几个问题
1.显示位数
我们来看一下“检定仪”的显示位数问题,当使用1量程时,即(-3.000~19.999)mV,小数点后有3位显示,不成问题。当使用2量程时,即(18.00~199.99)mV,小数点后有两位显示,分辨力为0.01mV。假设有一个0.5级(0~500)℃K分的被检表,经查表得:E500=20.650mV,此表允许误差=0.5%×20.650=0.10325mV≈0.10mV。由此可看出小数点后两位已达到检定要求,即使能读出小数点后3位也是无意义的。
2.设定外接电阻
该“检定仪”设定了3个外接电阻,分别为0Ω、5Ω、15Ω,在检定时一定要按照被检表要求选择相应阻值,若被检表要求的外接电阻值“检定仪”没有配备,应在外线路上串接所需阻值再进行检定,否则会带来人为误差。特别是当检定一个表发
热工仪表检定仪示值误差检定方 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)