微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 无线通讯应用扩张,射频芯片加速微型化

无线通讯应用扩张,射频芯片加速微型化

时间:07-22 来源:互联网 点击:


以英飞凌为例,该公司已历经七个双极世代的射频技术演进,反映此技术从60年代后期至最新8寸矽锗碳(SiGe:C)制程的大幅转变(图2)。矽锗碳对射 频元件而言是一项重要的制程技术突破,透过该制程可提供高达 200GHz及0.6dBNFmin@1.8GHz的fT*BVCEO产品。

    2
    图2 射频晶片矽锗制程演进过程

值得关注的是,2008年第一款以射频互补式金属氧化物半导体(CMOS)技术、制程与设计专业知识开发的Bulk CMOS RF开关问世,更彻底改变行动通讯前段开关市场,随后在2012年此技术也进一步升级至130奈米。

小型、高整合及多功能设计成显学

由于各种无线通讯应用设计持续增加,加上用户对提升无线使用体验殷切的需求,包括汽车、家庭自动化、智慧电表、教育、医疗与健身/保健等领域皆需要更具智 慧的连线能力,同时也须整合具备3G、长程演进计划(LTE)与Wi-Fi功能的智慧型手机与平板电脑,扩大支援使用者的联网需求。

据市场研究单位统计,全球Wi-Fi电子产品出货量正快速成长,年成长率约20%。消费者持续选择具有Wi-Fi功能的行动装置以存取网际网路,Wi- Fi热点的数量也持续增加,透过次世代传输量极高(最低目标1Gbit/s)的802.11ac产品,可提供双频段、双并行(DBDC)无线存取点、路由 器与闸道器,Wi-Fi讯号将会变得更强。

即将到来的无线技术,例如IEEE 802.11ac/ad/af、LTE、LTE-Advanced、IMT-Advanced,将改变未来多模式与多频段多重输入多重输出(MIMO)行 动装置的射频架构,并以行动产业处理器介面(MIPI)或DigRF V4介面支援愈来愈多的语音、资料及视讯应用。另外,随着4G LTE开始应用于日常生活中,估计下一代行动通讯技术5G也将于2020年推出,进一步提供更快的传输速率。

在目前的射频元件市场开发中,封装是极重要的技术,因为消费者不断追求轻薄短小的行动装置。随着更多的应用整合至单一平台,预期射频元件设计趋势将聚焦于 小型化尺寸、更高的整合度、更多的频段与模式、更强的抗干扰能力,以及可支援多种新兴无线功能共存、多种收发器的控制介面的形式。

总而言之,行动通讯与Wi-Fi技术将不断演化,资料传输速率是技术的主要改进要点,包括速度、距离涵盖范围与技术标准的提升,皆是射频晶片商未来的投资重点。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top