微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 关于测量中的建立时间和保持时间的理解

关于测量中的建立时间和保持时间的理解

时间:01-12 来源:互联网 点击:

T-Tco-T2max>

Tpd+T-Tco-T2max>

T-(Tpd+T-Tco-T2min)>=T4 即Tco+T2min-Tpd>

从上式也可以看出如果Tpd=0也就是时钟的延时为0那么同样是要求Tco+T2min>

delay="0",data Delay = 3ns,那么数据port的新数据必须在时钟port的时钟沿到来之前5ns就得赶到数据port,其中的3ns用来使新数据从数据port赶到触发器的D端(由于data Delay ),剩下的2ns用来满足触发器的Tco。

假设3,Clock delay="1ns",data Delay = 3ns,由于时钟port的时钟沿推后1ns到达触发器的时钟端,那么数据port的新数据只需在时钟port的时钟沿到来之前4ns赶到数据port即可。

假设4,假设时钟的周期T=4ns,即你的系统需要运行在250M频率上,那么以上的假设中,假设2显然是不成立的,也就是说在假设2的情况下,你的系统运行频率是低于250M的,或者说在250M系统里是有setup time violation的。在假设2的情况下,由于Tco及Tpd均是FPGA的固有特性,要想满足4ns的T,那么唯一你能做的就是想方设法减小Tdelay,也就是数据路径的延时。即所谓的找出关键路径,想办法优化之。

总结,在实际的设计中,对于一个给定的IC,其实我们很容易看到T,Tpd,Tsetup,Th都是固定不变的(在跨时钟域时,Tpd会有不同),那么我们需要关心的参数就是Tdelay,即数据路径的延时,控制好了这个延时,那我们的设计就不会存在建立时间和保持时间不满足的情况了!

后记:有个著名的笔试题,这样说道:时钟周期为T,触发器D1的建立时间最大为T1max,最小为T1min,该触发器的数据输出延时为Tco。组合逻辑电路最大延迟为 T2max,最小为T2min。假设D1在前,D2去采样D1的数据(实际就是对图2的文字描述),问,触发器D2的建立时间T3和保持时间应满足什么条件。这里给出一个简易公式供大家死记一下,

以下两个公式确定了D2的Tsetup和Thold:

1) D1的Tco + max数据链路延时 + D2的Tsetup < T(即T3 < T - Tco - T2max)

2) D1的Tco + min数据链路延时 > D2的Thold(即T4< Tco + T2min)

其实上面的式2可以从T3+T4=T推出,不过要注意把1)中的T2max改为T2min即可。

总之,建立时间长了,保持时间就短了。

实际中,某条数据链路延时是一个定值,只不过要求它落在区间{T2min,T2max}。这也是T2min和T2max的实际意义。从现实设计出发,个人觉得这个题改为考T2max和T2min更合适,那是不是有更多人犯晕呢?


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top