微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 信号完整性分析基础系列之二十四——关于抖动(上)

信号完整性分析基础系列之二十四——关于抖动(上)

时间:01-12 来源:互联网 点击:

10e+12样本下的抖动。

时钟抖动和数据抖动 /水平线以上的抖动和水平线以下的抖动

当我们在定义抖动具有四个维度时,特别强调被测信号的类型分为时钟抖动和数据抖动,这是否意味着两种抖动的测量方法是完全不一样的呢? 其实,我们可以将时钟信号理解为一种特别的数据。所有用于数据抖动的测量方法理论上都可以用于测量时钟,只是因为时钟信号非常简单,是规则的010101…码型,因此,对于时钟抖动通常是通过直接测量一定数量的样本(样本数量应该是多少一般也没有统一的定义,甚至在有的时钟芯片手册中也没有说明)的参数结果,统计得出参数变化大小的pk-pk值,即为峰峰值抖动(pk-pk jitter)。 峰峰值抖动随着测量时间的增加,测量结果会变大。峰峰值抖动的测量结果不具备重复性,因为随机抖动理论上是无限发散的。有效值抖动(rms jitter)表示参数变化大小的标准偏差值。 我们将这种定量方法直接测量出来的抖动形象地称为“水平线以上的抖动”,因为这种抖动结果是不需要借助数学模型进行推导和预测的。 这种方法的抖动也叫“定时抖动(Timing jitter)”。 时钟抖动关注的信号参数类型主要有周期(period),TIE(Time Interval Error)和相邻周期间(Cycle-Cycle Period),对于时钟信号的单独研究,通常三种参数的抖动都需要测量。具体这三种抖动参数的介绍,请参考胡为东的文章《抖动的分类》。

数据抖动关注的是一定误码率下的TIE抖动,现在的串行数据测量领域通常默认的都是10e-12误码率,也就是说需要测量10e+12样本,这需要示波器测量几个小时甚至几天的时间,即使象力科的第四代示波器那么快的数据处理能力也无法“硬”测量出10e+12样本的参数来作为测量结果,因此,就需要根据某种数学模型来根据当前一定数量的样本数测量的结果来“预测”10e+12的样本下的抖动结果,这种基于数学模型预测的方法测量的抖动叫“水平线以下的抖动”。所谓抖动的风云变幻即在于一直在争论使用什么样的数学模型来预测抖动是最准确的。很多抖动相关的文章就是在用一连串的数学公式来说明作者发现的一种新模型是更准确的,看得您云里来雾里去的。

认识TIE抖动

为什么TIE抖动是作为测量数据抖动Tj的默认参数呢? 我想里引用胡为东文章《串行数据系统抖动基础》中的介绍可以帮助我们理解TIE的重要性:

“通信系统的实质是通过一段介质发送或者接收数据。发送端TX发出不同编码形式的高速串行数据,经过一段链路传输后到达接收端RX,串行数据在传输过程中会受到各种各样的干扰,引起数据的抖动,串行数据系统工作的目的就是要尽可能的减少这些干扰的影响使得接收端能准确无误的恢复出发送端发送过来的数据。由于接收端(一般是由D触发器构成)需要使用时钟采样来完成同步接收数据,因此时钟信号和数据信号之间的同步关系是非常重要的,即必须要满足一定的建立时间和保持时间。因此串行数据时钟系统结构的变化最根本上是为了满足时钟与数据之间的时序关系,以便接收端能正确的接收到信号。当数据信号的电平发生翻转后,时钟边沿与数据边沿需要一定的建立时间来锁存数据;同时,数据信号的电平需要一定的保持时间让时钟能稳定的锁存数据。为了让建立时间和保持时间最大化,时钟最好能出现在数据比特位的中央。但是由于数据或者时钟存在抖动,抖动较大时,无法满足建立时间和保持时间的要求,D触发器可能输出错误的数据,产生误码。特别是在高速数字电路中,速率的增加导致建立时间和保持时间的余量越来越小,由于抖动产生误码的概率越来越高,所以,时钟和数据的抖动测试非常重要。

研究串行数据系统的抖动主要是研究时钟与串行数据的相对抖动,而不是单纯的指时钟抖动或者数据抖动。也就是说即使时钟有很大的抖动,但是只要数据也存在同样大的抖动,则两者之间的相对抖动仍旧很小,时钟和数据之间的建立时间和保持时间也仍旧能够得到保证。”

如何将时钟和数据之间的关系联系起来呢? TIE(Time Interval Error)! TIE为作为抖动中最重要的一个参数,我们需要对它有深刻认识。 TIE定义为被测信号边沿与“参考时钟”边沿之间的时间间隔。具体计算中是以和参考电平的交叉点的时刻来计算的,如图3所示。TIE是在信号和参考时钟的每一个边沿都进行测量。

图3 TIE的定义

产生“参考时钟”(也就是前面抖动定义中提到的“理想位置”)有几种方法,比较常用的方法是从被测信号中通过软件PLL进行恢复。有时侯是直接定义一个理

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top