微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 辐射、散射近场测量及近场成像技术

辐射、散射近场测量及近场成像技术

时间:01-15 来源:互联网 点击:

有一定的精度,但对低副瓣或超低副瓣天线测量就必需考虑这些因素,因此,需要建立严格的耦合方程。

(2)近场测量对天线口径场诊断的精度和速度

近场测量对常规阵列天线口径场的诊断有较好的诊断精度,但对于超低副瓣天线阵列而言,诊断精度和速度还需要进一步研究。

(3)辐射近场扫频测量的研究

就一般情况而言,天线都在一个频带内工作,因此,各项电指标都是频率的函数,为了快速获得各个频率点的电指标,就需要进行扫频测量。扫频测量的理论与点频的理论完全一样,只是在探头扫描时,收发测量系统作扫频测量。
(4)时域辐射近场测量的研究

为了反映脉冲工作状态和消除环境及其他因素对测量数据的影响,时域测量是一个良好的解决此类问题的途径,但目前处于研究阶段[9]。

(5)无相位的辐射近场测量的研究

前述的辐射近场测量方法都需要测量出近场的相位和幅度,才能利用近场理论计算出天线的远场电特性,为了简化计算公式和测量系统以及降低测量时间与测量的相位误差(在频率f很高的情况下,即f>80 GHz,相位的测量误差是很大的),于是,有学者提出只用近场测量值的幅度来重建天线远场的方法。该方法的基本思想为[10]:测出S1,S2两个面的幅度值(A1,A2),人为选定S1面测量值的相位(φ1),先由S1面的幅度、相位值(A1,φ1)计算出S2面的幅度、相位值(a2,φ2),用A2代替a2,再由A2,φ2求出S1面的a1,φ1,用A1代替a1,重新由A1,φ1求出S2面新的a2,φ2,如此迭代下去,直至A1-a1≤ε,A2-a2≤ε(ε为测量精度),便可得到S1或S2面的相位分布,这时,可由S1或S2实测的幅度和迭代过程所得到的相位求得天线的远场电特性。由于迭代收敛等原因,这方面的研究还未付诸实施。

(6)球面、柱面近场扫描方式误差上界的分析与估算。

 

众所周知,在离开被测目标3λ~5λ(λ为工作波长)距离上测量该区域电磁场的技术称为近场测量技术。如果被测目标是辐射器,则称为辐射近场测量;若被测目标是散射体,则称为散射近场测量;对测得散射体的散射近场信息进行反演或逆推就能得到目标的像函数,这就是目标近场成像。但是,截止目前为止,关于辐射、散射近场测量以及近场成像技术溶为一体的综述性文章还未见到公开的报导,这对从事这方面研究的学者无疑是一种遗憾。为使同行们能全面地了解该技术的发展动态,该文概述了近几十年来关于辐射、散射近场测量及近场成像技术前人所做的工作及其最新进展,并指出了未来研究的主要方向。

1、辐射近场测量

辐射近场测量是用一个已知探头天线(口径几何尺寸远小于1λ)在离开辐射体(通常是天线)3λ~5λ的距离上扫描测量(按照取样定理进行抽样)一个平面或曲面上电磁场的幅度和相位数据,再经过严格的数学变换计算出天线远区场的电特性。当取样扫描面为平面时,则称为平面近场测量;若取样扫描面为柱面,则称为柱面近场测量;如果取样扫描面为球面,则称为球面近场测量。其主要研究方法为模式展开法,该方法的基本思想为:空间任意一个时谐电磁波可以分解为沿各个方向传播的平面波或柱面波或球面波之和;主要研究成果及进一步要解决的问题如下所述。

1.1、辐射近场测量的发展现状

辐射近场测量的研究起始于50年代,70年代中期处于推广应用阶段(商品化阶段)。目前,分布在世界各地的近场测量系统已有100多套[1]。该技术的基本理论[2~4]已基本成熟,这种测量方法的电参数测量精度比常规远场测量方法的测量精度要高得多,而且可全天候工作,并具有较高的保密性,因此,在军用、民用中都显示出了它独特的优越性。

1.2、辐射近场测量研究的主要成果

几十年来,辐射近场测量的研究在以下4个方面取得了突破性的进展:

(1)常规天线电参数的测量

天线近场测量可以给出天线各个截面的方向图以及立体方向图,可以分析出方向图上的所有电参数(波束宽度、副瓣电平、零值深度、零深位置等)和天线的极化参数(轴比、倾角和旋向)以及天线的增益。

(2)低副瓣或超低副瓣天线的测量

天线方向图副瓣电平在-28~-35 dB之间的天线称为低副瓣天线;副瓣电平小于-40 dB的天线称为超低副瓣天线。对它们的测量要用到"零探头"技术[5],据文献报导,副瓣电平在-40 dB以上时,测量精度为±3 dB,副瓣电平为-55 dB时,测量精度为±5 dB[6]。

(3)天线口径场分布诊断

天线口径场分布诊断是通过测量天线近区场

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top