通过前端将PC声卡变成高速采样示波器设计参考
重构滤波器使用的AD783和放大器需要双电源供电。可以使用6节AA电池,3节提供+4.5 V电源,另外3节提供–4.5 V电源。或者,也可以使用单个9 V电池,利用一个电阻分压器来提供作为地的中间电源电压,这将需要由一个运算放大器进行缓冲才能提供电路所需的地电流。第三种方法是使用一个可调线性调节器,产生相对于电池负极的约4.5 V电压,用作接地基准。
第四种方法是使用备用PC或笔记本电脑USB端口提供的+5 V电源。–5 V电源可以由DC/DC电压逆变器产生,例如ADI公司的ADM8829—(表贴封装)。应特别注意避免受到DC/DC电压逆变器产生的开关噪声干扰。
输入衰减器
AD783的小信号增益远高于全摆幅带宽。通过在采样器之前插入一个10:1阻性衰减器以限制最大信号带宽,可以实现远超过20 MHz的可用带宽。多家公司提供成本相对较低的示波器探头,如Syscomp Electronic Design, Ltd2等(图9)。下面是笔者撰写本文时获得的信息:
Syscomp Electronic Design生产的40 MHz带宽、1×/10×可切换型示波器探头(P6040),每对价格$29.99。
图9. P6040 1×/10×示波器探头
HobbyLab3生产的20 MHz 10:1版本示波器探头(GT-P6020),每对价格$19.50。
Gabotronics.com4生产的100 MHz P2100和60 MHz P2060通用探头,每种价格约$10.00。
使用探头
图10、图11和图12所示的声卡5屏幕截图利用P2100 100 MHz 10×探头获取,它可以补偿10 pF至35 pF范围内的输入电容。对于建议的电路,如果PCB板线路长度尽可能保持最短,那么这个调整范围似乎是充足的。采用10×探头时,输入看起来像10 MΩ和18 pF,可以支持最高±30 V的输入电压。
为了展示AD783采样保持输入级的性能,首先利用1 kHz平顶方波调整探头补偿。屏幕截图显示了器件对频率为1 MHz和50 MHz的不同信号的响应。图10中的两个屏幕截图显示单通道情况,(a)为1 MHz、5 V p-p方波,(b)为50 MHz、5 V p-p方波。每种情况下,采样时钟均针对大约500 Hz的下采样信号频率进行调整,以便消除任何声卡响应差异。因此,左边屏幕截图的有效时间刻度为500 ns/分频比,右图为10 ns/分频比。声卡输入增益设置如下:对于1 MHz输入,示波器软件报告1.072 V p-p的幅度;对于50 MHz输入,则报告762.2 mV p-p的幅度。0.7622/1.072接近–3 dB。这一测量结果显示,100 MHz 10×探头和AD783的组合具有50 MHz的3 dB带宽。
(a)(b)
图10. 单通道10×探头:1 MHz (a)和50 MHz (b) 5 V p-p输入方波
图11中,同样的1 MHz (a)和50 MHz信号(b)被施加于两个通道。从两个通道的两幅重叠屏幕截图可以看出,两个通道之间具有良好的增益、失调和延迟匹配。
(a)(b)
图11. 双踪双通道匹配10×探头:1 MHz (a)和50 MHz (b) 5 V p-p输入方波
最后一幅屏幕截图(图12)显示375 kHz、5 V p-p方波(红色线)和1.5 MHz、42 ns宽5 V p-p脉冲(绿色线)的情况。水平刻度为333 ns/分频比。AD783采样器保持完整的5 V摆幅,即便输入这些较窄的42 ns脉冲也是如此。
图12. 双踪双通道、10×探头:375 kHz、5 V p-p方波和1.5 MHz、42 ns 5 V p-p脉冲
高速采样示波器PC声 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)