利用示波器有效辅助开关电源设计Q/A
使用示波器" title="示波器">示波器来测量开关电源" title="开关电源">开关电源的参数
优化开关电源的设计
Q1:开关电源输出电压的纹波" title="纹波">纹波是一个重要的指标,如何正确使用示波器来测量这个指标?
A1:纹波的定义是附着于直流电平之上的包含周期性与随机性成分的杂波信号,英文称为 PARD (Periodic And Random Deviation)。它的定义是杂波的峰峰值。测量纹波要注意的事项:
示波器探头地线会带来很大纹波,应该拔掉地线直接使用探头内地线进行测量。当然,最好的测量方法是使用50欧姆终端电阻,用BNC电缆直接联结到示波器,这里应该注意该50欧姆电阻要考虑功耗,可能要大功率电阻。
相关的标准要求,比如是否要分出周期性工频纹波和开关纹波,高频噪声等。再比如,测量频率是否要限制在20MHz以下。
Q2:开关电源总会有电磁辐射,同时也有可能受到其他电器设备的干扰。怎样做才能达到开关电源即不受其他电器的干扰,又有效地防止其向外辐射呢?
A2:开关电源因工作在高电压大电流的开关状态下,其引起的电磁兼容性问题是相当复杂的。从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合和电磁波耦合几种。电磁兼容产生的三个要素为:干扰源、传播途径及受干扰体。共阻抗耦合主要是干扰源与受干扰体在电气上存在共同阻抗,通过该阻抗使干扰信号进入受干扰对象。线间耦合主要是产生干扰电压及干扰电流的导线或PCB线,因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生的感应电场对受干扰体产生的耦合。磁场耦合主要是大电流的脉冲电源线附近产生的低频磁场对干扰对象产生的耦合。而电磁波耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受干扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。
从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手。1)减小干扰源产生的干扰信号;2)切断干扰信号的传播途径;3)增强受干扰体的抗干扰能力。在解决开关电源内部的电磁兼容性时,可以综合运用上述三个方法,
以成本效益比及实施的难易性为前提。对开关电源产生的对外干扰,如电源线谐波电流、电源线传导干扰、电磁场辐射干扰等,只能用减小干扰源的方法来解决。一方面,可以增强输入输出滤波电路的设计,改善有源功率因数校正(APFC)电路的性能,减少开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等。另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗干扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力。通常,对1.2/50μs开路电压及8/20μs短路电流的组合雷击波形,因能量较小,可采用氧化锌压敏电阻与气体放电管等的组合方法来解决。
减小开关电源的内部干扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:
注意数字电路与模拟电路PCB布线的正确区分、数字电路与模拟电路电源的正确去耦;
注意数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻干扰、减小地环的影响;
布线时注意相邻线间的间距及信号性质,避免产生串扰;减小地线阻抗;
减小高压大电流线路特别是变压器原边与开关管、电源滤波电容电路所包围的面积;
减小输出整流电路及续流二极管电路与直流滤波电路所包围的面积;
减小变压器的漏电感、滤波电感的分布电容;
采用谐振频率高的滤波电容器等。
Q3:开关电源在低温下启动(如:-20℃以下)有什么特殊的要求吗?
A3:关键是器件选择的温度范围。比如电容、MOSFET、二极管等等。
Q4:如何精确的去测试开关电源的纹波与噪音?在测试Ripple & noise时是不是要在专门的实验室才可以,因为实验中的其它设备对它的影响都比较大在TDS430中应如何去设定呢?
A4:当然如果您有专门的实验室进行纹波测量是最理想的。在不具备这个条件的时候应当注意的问题有:
示波器应该有良好的接地。
如果您的测量标准有带宽限制的要求,应该打开TDS430A中的20MHz带宽限制,使用示波器的交流耦合
使用BNC电缆,并用TDS430A的50欧姆输入阻抗档进行测量(这时您可能需要50欧姆的大功率负载,BNC适配器或者制作测试夹具)
为提高测量精度,不应该使用示波器的探头,示波器探头的地线会引入比较大的噪声。
Q5:在AC/DC开关电源中能否用示波器进行功率因数测量?如何进行测量?
A5:其实使
示波器开关电源电磁干扰EM 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)