基于LabVIEW的鼠标位移测量技术研究
,Y0 ) 之差与过边界次数即可求出在显示坐标中鼠标指针的位移。其他运动方向的位移同理可以得到。最后通过比例因子μ将显示坐标映射到鼠标坐标系中,即可求出实际位移( x i ,yi ) 。详细的程序流程图如图1 所示。 图1 鼠标位移测量程序流程图 LabVIEW 具有代码直观、层次清晰的图形化编程特点。在前面板上设置显示坐标为M×N = 500 × 300 的指针工作区域,并设置初始坐标在工作区的中心( 250, 150) .X 方向右位移消除边界的部分程序框图如图2 所示,条件语句判断当指针到达右边界( 499, Yi ) 时,下一次循环将其设为( 0, Yi ) ,并将以后的位移增加1 倍M.循环体内使用了移位寄存器。 图2 部分消除边界的LabVIEW 程序框图 2 检测实验与性能分析 检测实验采用USB 接口的dell 三键光电有线鼠标,最高分辨率400dpi.分别测试了鼠标在指针最小与最大移动速度( 控制面板中设置) 中以4mm/ s 与20mm/ s 的速度进行位移测量性能。采用步进电机与控制器对其进行位移标定,位移精确度为0.01mm.得到如图3 所示位移图像。 由于步进电机显示位移与鼠标实际检测的位移具有统计关系而且是线性的,故可以建立回归模型: Yi = A + B ?? X i + εi( i= 1, 2, ……, n) , 其中( X i , Yj ) 表示( X , Y) 的第i 个观测值,A 、B 为参数,A + B ×X i 为反映统计关系直线的分量,εi 为反映在统计关系直线周围散布的随机分量,εi ~ N( 0, δ 2 ) , 服从正态分布。根据最小二乘法: 相关系数越接近1, 则二者越正相关。图3 直线拟合的结果如表2. 表2 线性拟合结果 图3 步进电机标定实验及线性拟合 由表可知,不同条件下两种方法测定的位移相关系数均接近于1, 即实验鼠标位移测定与步进电机标定位移接近相等;截距A 可以忽略不计,即鼠标位移测量没有系统误差; 斜率B 的标准差均小于0.3%, 即实验鼠标随机误差小。以上充分说明实验鼠标在低速的位移测量具有精度高、线性度好、误差小等优点。 为测试低速条件下鼠标位移测量性能与速度的关系,用相同的标定方法测试了不同速度鼠标位移的性能。由图4 可知总体来看,鼠标移动速度越大,斜率误差与总拟合标准差越大,测量位移性能降低,但在20mm/ s 速度以内仍满足位移测定的一般需求。可以预见随速度的增大,误差将逐渐变大。此鼠标位移测定方法适宜于低速情况。 图4 不同速度位移测定的误差 3 总结 本文通过对鼠标原理的分析,提出了利用显示坐标系统与鼠标坐标系统的映射关系测量实际位移的方法。通过Lab-VIEW 编程调用库函数节点( CLF) 实现了对显示坐标系统的边界消除,从而实现了不受量程限制的位移测定。利用步进电机对实际的位移测量性能进行了研究,结果显示此方法达到了精确位移测量的要求,可以提供精确度0.1mm 的位移测量,具有线性度好,精确度高,误差小的优点。同时研究显示该位移测量系统在低速的位移测量中具有更佳的性能。采用高层软件设计的方法,使鼠标位移测量不受鼠标接口、鼠标型号的限制,具有高性价比与强适用性的特征。此鼠标位移检测方法集成到基于LabVIEW 的漏磁检测系统中,取得了良好的效果。
LabVIEW位移测量位移传感 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)