使用模拟多路复用器的多通道电流测量技术
时间:02-27
来源:互联网
点击:
很多嵌入式系统需要进行精密电流测量,不同的应用可以由不同的传感器实现。现在应用比较多的电流测量传感器有:发光二极管、燃油传感器(输出范围从10nA-20mA)。目前,电流输出传感器比电压输出传感器更受欢迎,这是由于它们具有较高的噪声范围以及可以使用较长的电缆。本文介绍了一种使用模拟多路复用器测量多通道输入电流的方法。
原理
有很多方法来测量电流。一种方法是使用通过电阻的电流来测量电压。电阻上的电压可以通过欧姆定律得到:
V=IR
这里I是当前已知电阻的电流值。电阻的输出电压可以使用模数转换器ADC转换为数字值。有不同的ADC类型诸如Delta sigma,单端或差分逐次逼近型(SAR)。图1显示了一个微处理器和模数转换器构成的简单的测量分流电阻的电压的方式。如果ADC输入电压范围有限,同时还需要进行精密测量,那么就需要精度更高的放大器来实现。
利用ADC测量到的电压除以电阻就得到电流值。电阻公差越小,模数转换器分辨率越高,测量到得电流就越准确。
FIGURE-1
图1:多通道电流测量
当需要从多个传感器测量或监控电流时,可以使用一个单ADC的多路复用器实现。多路复用器的输出连接到多个差分放大器。放大器的差分放大输出连接到ADC进行转换。
图2显示了多路复用器的构成:放大器、ADC、微处理器、模拟器件、外围部件(如定时器和memory)。可以感应和测量不同的电流源。微处理器可以记录测量值。
图2:多通道电流测量结构
图中有四个电流感应分流电阻- Rs1 Rs3和Rs4(通过这些电阻可以测量到电流)。这里显示的仅仅是个例子, 也可以连接其他传感器输出比如霍尔传感器或输出电流的模拟传感器。电流测量的理想通道可以通过多路复用器来选择。这些通过处理器来控制。模拟多路复用器输出连接到提供信号增益的差分放大器。运行时间内,差分放大器和模数转换器都是可以通过微处理器系统控制配置的。这样做有利于下面情况:当不同输入通道通过复用器切换时,以及每个通道信号需要有不同的增益时。增益信号输入到ADC随后ADC的数据通过微处理器系统处理。
下面是计算ADC转换结果的电流的方程式
可测量输入电流:4mA
差分放大器增益:10
ADC供电电压:5V
电流I可以从ADC读数计算出结果:
电流I=(电压计数 x(mv /计数)/电阻)/放大器增益
市场上有相当数量的微处理器具备片上ADC,并且可以在运行时通过固件进行配置。ADC应该满足使用要求,具备适当的输入电压范围,满足操作要求、分辨率、增益控制等。如果ADC是差分的,能控制的增益到输入信号,那么图中的差分放大器也可以不用。
微处理器系统具有运行时可配置的定时器。定时器可以设置为在一个特定的时间间隔产生中断。这些中断是用来中断微处理器并连接所需的多路复用器输入通道到输出。读出ADC转换结果读数、处理实测数据然后储存在memory或传输到PC进行数据分析。通过改变计时器周期,可以很容易地变化监控每个通道的时间。如果只监控一个通道,只需在选定所需监控通道后关掉定时器中断即可。
下面这种情况必须十分小心,当通过多路复用器从一个频道切换到另一个频道时,这时候ADC仍在处理转换,那么可能会导致不准确的测量。理想的方法就先停止ADC,清除之前任何转换结果,然后再切换到所期望的输入通道,之后ADC就可以重新运行了。
通常应用一般要求信号尽可能快地发送,这基于多路复用器的开关时间(例如:复用器从一个通道切换到另一个通道所花的时间),这个时间应该尽可能小,因为长时间的切换可能导致信号损失。所有的多路复用器应该在建立新连接之前断掉,这是为了避免与之前通道的信号发生短路。
影响电流测量的参数
有几个参数决定了感应的精确和电流的测量
电阻精度
一些参数对于电流精确测量时很重要的,首先要选择适当阻值的电阻,还要有合适的额定功率、允许偏差、温度系数。拿温度系数来说,它定义了温度变化时每度的变化对应的电阻的变化。
如果感应电阻(Rsense)值非常小,那么经过感应电阻的电压降也会非常微小。这将需要大幅提高电平来达到精确电流测量。相反,如果Rsense值很大,那么然后很大功率(I2R)将被消耗,这会造成温度变化,电阻经过加热后最终会带来阻值的变化。过多的电源耗散也会导致电源损耗从而系统效率降低。
放大器精度
使用的放大器应具备高输入阻抗、低输出阻抗、高CMRR、低输入偏移电压。输入偏移电压随温度线性变化。如果输入偏移电压很大,那么放大
原理
有很多方法来测量电流。一种方法是使用通过电阻的电流来测量电压。电阻上的电压可以通过欧姆定律得到:
V=IR
这里I是当前已知电阻的电流值。电阻的输出电压可以使用模数转换器ADC转换为数字值。有不同的ADC类型诸如Delta sigma,单端或差分逐次逼近型(SAR)。图1显示了一个微处理器和模数转换器构成的简单的测量分流电阻的电压的方式。如果ADC输入电压范围有限,同时还需要进行精密测量,那么就需要精度更高的放大器来实现。
利用ADC测量到的电压除以电阻就得到电流值。电阻公差越小,模数转换器分辨率越高,测量到得电流就越准确。
FIGURE-1
图1:多通道电流测量
当需要从多个传感器测量或监控电流时,可以使用一个单ADC的多路复用器实现。多路复用器的输出连接到多个差分放大器。放大器的差分放大输出连接到ADC进行转换。
图2显示了多路复用器的构成:放大器、ADC、微处理器、模拟器件、外围部件(如定时器和memory)。可以感应和测量不同的电流源。微处理器可以记录测量值。
图2:多通道电流测量结构
图中有四个电流感应分流电阻- Rs1 Rs3和Rs4(通过这些电阻可以测量到电流)。这里显示的仅仅是个例子, 也可以连接其他传感器输出比如霍尔传感器或输出电流的模拟传感器。电流测量的理想通道可以通过多路复用器来选择。这些通过处理器来控制。模拟多路复用器输出连接到提供信号增益的差分放大器。运行时间内,差分放大器和模数转换器都是可以通过微处理器系统控制配置的。这样做有利于下面情况:当不同输入通道通过复用器切换时,以及每个通道信号需要有不同的增益时。增益信号输入到ADC随后ADC的数据通过微处理器系统处理。
下面是计算ADC转换结果的电流的方程式
可测量输入电流:4mA
差分放大器增益:10
ADC供电电压:5V
RS值 | 多路复用器输入端电压 | ADC输入电压范围 |
| 16位分辨率ADC计数 |
50E, 0.01% | 0.2V | 2V | 7.8mV | 30μV |
100E, 0.01% | 0.4V | 4V | 15.62mV | 61μV |
电流I可以从ADC读数计算出结果:
电流I=(电压计数 x(mv /计数)/电阻)/放大器增益
市场上有相当数量的微处理器具备片上ADC,并且可以在运行时通过固件进行配置。ADC应该满足使用要求,具备适当的输入电压范围,满足操作要求、分辨率、增益控制等。如果ADC是差分的,能控制的增益到输入信号,那么图中的差分放大器也可以不用。
微处理器系统具有运行时可配置的定时器。定时器可以设置为在一个特定的时间间隔产生中断。这些中断是用来中断微处理器并连接所需的多路复用器输入通道到输出。读出ADC转换结果读数、处理实测数据然后储存在memory或传输到PC进行数据分析。通过改变计时器周期,可以很容易地变化监控每个通道的时间。如果只监控一个通道,只需在选定所需监控通道后关掉定时器中断即可。
下面这种情况必须十分小心,当通过多路复用器从一个频道切换到另一个频道时,这时候ADC仍在处理转换,那么可能会导致不准确的测量。理想的方法就先停止ADC,清除之前任何转换结果,然后再切换到所期望的输入通道,之后ADC就可以重新运行了。
通常应用一般要求信号尽可能快地发送,这基于多路复用器的开关时间(例如:复用器从一个通道切换到另一个通道所花的时间),这个时间应该尽可能小,因为长时间的切换可能导致信号损失。所有的多路复用器应该在建立新连接之前断掉,这是为了避免与之前通道的信号发生短路。
影响电流测量的参数
有几个参数决定了感应的精确和电流的测量
电阻精度
一些参数对于电流精确测量时很重要的,首先要选择适当阻值的电阻,还要有合适的额定功率、允许偏差、温度系数。拿温度系数来说,它定义了温度变化时每度的变化对应的电阻的变化。
如果感应电阻(Rsense)值非常小,那么经过感应电阻的电压降也会非常微小。这将需要大幅提高电平来达到精确电流测量。相反,如果Rsense值很大,那么然后很大功率(I2R)将被消耗,这会造成温度变化,电阻经过加热后最终会带来阻值的变化。过多的电源耗散也会导致电源损耗从而系统效率降低。
放大器精度
使用的放大器应具备高输入阻抗、低输出阻抗、高CMRR、低输入偏移电压。输入偏移电压随温度线性变化。如果输入偏移电压很大,那么放大
模拟多路复用器多通道电流测量技 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)