使用示波器进行功率测量的7大秘诀
时间:03-23
来源:互联网
点击:
第1个秘诀
通过计算平均值提高测量分辨率
在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。
求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。
垂直分辨率每增加一位,需要计算多少平均值?答案是每计算4个样本平均值,便可将垂直分辨率增加1位。原理如下:
●增加的位数 = 0.5 log2 N
●N = 计算平均值的样本数
●例如,对16个样本求平均值,垂直分辨率将增加
●位数 = 0.5 log2 16 = 2
●因此,有效的垂直分辨率为 8 + 2 = 10 位。
这种算法在垂直分辨率为12位时效果最好,因为再继续增加下去,其他因数(例如示波器的垂直增益或偏置精度)将起到决定性作用。平均模式的优点是,它对示波器的实时带宽没有任何限制。缺点是它要求使用重复性信号,并会降低波形更新速率。在正常采集模式下与平均模式下捕获的开关电源的vds如图1和图2所示。 第2个秘诀
使用高分辨率采集提高测量分辨率
降低噪声的第2个方法是高分辨率模式,它不需要使用重复信号。Agilent InfiniiVision 3000 X系列等现代化示波器在正常采集模式下可提供8位垂直分辨率(与大多数其他数字化仪类似)。然而与平均模式一样,高分辨率模式也只能达到12位的垂直分辨率。在高分辨率模式下捕获的vds如图3所示。 高分辨率模式是对同一次采集的连续点求平均值,而不是对某个时间段内多次采集的点求平均值。在高分辨率模式中,您不能像在平均模式中那样,直接控制平均值数量。垂直分辨率位数的增加由示波器的时间/格设置决定。
当在较慢时基范围状态下工作时,示波器会连续过滤相继的数据点,并将过滤结果显示到显示屏上。增加屏幕上数据的存储器深度,也会同时增加进行平均值计算的点数。高分辨率模式下,扫描速度越快,在屏幕上捕获的点数就越少,因此效果就越差。相反,扫描速度越慢,在屏幕上捕获的点数就越多,效果也就越显著。
第3个秘诀
使用交流耦合,去除直流偏置
如果您正重点研究信号的纹波,可能并不关心其直流偏置。通常,纹波和噪声与电源电压相比是极小的。如果您使用示波器的动态范围对这种偏置进行定量测量,那么在遇到更微小的信号细节时,可能无法进行深入分析。将示波器的耦合设置为“交流”,将会从测量结果中去除直流偏置,最大限度提高测量的线性度和动态范围。
第4个秘诀
使用示波器和探头限制带宽
这种降低噪声、增加动态范围的方法虽然简单,但常常被忽视。电源信号内容与示波器的标称带宽相比往往低得多(kHz至几十MHz级别)。多余的带宽不会传输任何信号信息,只会给测量带来额外的噪声。
大多数示波器使用专用的硬件滤波器来解决这个问题――通常是20至25 MHz低通滤波器。硬件滤波器与软件滤波器相比的一个优势是,它不会影响示波器的更新速率。
另一种方法是使用探头来限制带宽。测量链的带宽受其“最弱一环”的限制。500 MHz 示波器配备 10 MHz 探头,其带宽将会是 10 MHz。安捷伦提供了多种无源、有源的电流和差分探头,总有一款探头的带宽会适合您的特殊测量。
第5个秘诀
使用差分探头进行安全、精确的浮置测量
示波器探头上的接地引线通过 BNC 连接器的外壳连接到机箱。出于安全考虑,示波器的机箱通过电源线的接地插头连接到接地参考面。示波器与电源的接地方式不同,两者之间可能产生冲突。许多令人感兴趣的信号是以电势而不是以接地作为参考的(浮置)。电源设计人员采用各种方法来克服这一测量限制。
最常用的方法是,通过削除电源线的防护接地插头,或在电源线路中使用隔离变压器,使示波器“浮置”(隔离)。T这种实践方法非常危险,因为它有可能在示波器机箱上形成高电压。此外,使用浮置示波器进行测量,可能导致测量结果不精确。
测量浮置电源信号的另一种方法是,使用两个单端电压探头,用通道A的测量结果减去通道B的测量结果,即得到浮置电源信号。使用两个输入通道和探头来测量感兴趣的信号节点。然后使用示波器上的波形数学功能,让两个通道上的电信号相减,得到差分信号的迹线。
这种方法相对安全一些,因为示波器始终保持接地。然而当共模信号相对较小时,测量会受到一定的限制,因为此时使用的两个探头输入通道之间的增益失配,共模抑制比较低,大约不到 20 dB(10:1)。
进行安全精确的浮置测量,最好使用差分探头或差分放大器。差分探头提供较高的共模抑制比,通常达到 80 dB 或 10,000:1 甚至更高,因此您可以测量大共模信号中隐藏的小差分信号,实现适当的测量精度和高灵敏度。使用动态范围和带宽足够满足应用需求的差分探头,可进行安全和精确的浮置测量。
通过计算平均值提高测量分辨率
在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。
求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。
垂直分辨率每增加一位,需要计算多少平均值?答案是每计算4个样本平均值,便可将垂直分辨率增加1位。原理如下:
●增加的位数 = 0.5 log2 N
●N = 计算平均值的样本数
●例如,对16个样本求平均值,垂直分辨率将增加
●位数 = 0.5 log2 16 = 2
●因此,有效的垂直分辨率为 8 + 2 = 10 位。
这种算法在垂直分辨率为12位时效果最好,因为再继续增加下去,其他因数(例如示波器的垂直增益或偏置精度)将起到决定性作用。平均模式的优点是,它对示波器的实时带宽没有任何限制。缺点是它要求使用重复性信号,并会降低波形更新速率。在正常采集模式下与平均模式下捕获的开关电源的vds如图1和图2所示。 第2个秘诀
使用高分辨率采集提高测量分辨率
降低噪声的第2个方法是高分辨率模式,它不需要使用重复信号。Agilent InfiniiVision 3000 X系列等现代化示波器在正常采集模式下可提供8位垂直分辨率(与大多数其他数字化仪类似)。然而与平均模式一样,高分辨率模式也只能达到12位的垂直分辨率。在高分辨率模式下捕获的vds如图3所示。 高分辨率模式是对同一次采集的连续点求平均值,而不是对某个时间段内多次采集的点求平均值。在高分辨率模式中,您不能像在平均模式中那样,直接控制平均值数量。垂直分辨率位数的增加由示波器的时间/格设置决定。
当在较慢时基范围状态下工作时,示波器会连续过滤相继的数据点,并将过滤结果显示到显示屏上。增加屏幕上数据的存储器深度,也会同时增加进行平均值计算的点数。高分辨率模式下,扫描速度越快,在屏幕上捕获的点数就越少,因此效果就越差。相反,扫描速度越慢,在屏幕上捕获的点数就越多,效果也就越显著。
第3个秘诀
使用交流耦合,去除直流偏置
如果您正重点研究信号的纹波,可能并不关心其直流偏置。通常,纹波和噪声与电源电压相比是极小的。如果您使用示波器的动态范围对这种偏置进行定量测量,那么在遇到更微小的信号细节时,可能无法进行深入分析。将示波器的耦合设置为“交流”,将会从测量结果中去除直流偏置,最大限度提高测量的线性度和动态范围。
第4个秘诀
使用示波器和探头限制带宽
这种降低噪声、增加动态范围的方法虽然简单,但常常被忽视。电源信号内容与示波器的标称带宽相比往往低得多(kHz至几十MHz级别)。多余的带宽不会传输任何信号信息,只会给测量带来额外的噪声。
大多数示波器使用专用的硬件滤波器来解决这个问题――通常是20至25 MHz低通滤波器。硬件滤波器与软件滤波器相比的一个优势是,它不会影响示波器的更新速率。
另一种方法是使用探头来限制带宽。测量链的带宽受其“最弱一环”的限制。500 MHz 示波器配备 10 MHz 探头,其带宽将会是 10 MHz。安捷伦提供了多种无源、有源的电流和差分探头,总有一款探头的带宽会适合您的特殊测量。
第5个秘诀
使用差分探头进行安全、精确的浮置测量
示波器探头上的接地引线通过 BNC 连接器的外壳连接到机箱。出于安全考虑,示波器的机箱通过电源线的接地插头连接到接地参考面。示波器与电源的接地方式不同,两者之间可能产生冲突。许多令人感兴趣的信号是以电势而不是以接地作为参考的(浮置)。电源设计人员采用各种方法来克服这一测量限制。
最常用的方法是,通过削除电源线的防护接地插头,或在电源线路中使用隔离变压器,使示波器“浮置”(隔离)。T这种实践方法非常危险,因为它有可能在示波器机箱上形成高电压。此外,使用浮置示波器进行测量,可能导致测量结果不精确。
测量浮置电源信号的另一种方法是,使用两个单端电压探头,用通道A的测量结果减去通道B的测量结果,即得到浮置电源信号。使用两个输入通道和探头来测量感兴趣的信号节点。然后使用示波器上的波形数学功能,让两个通道上的电信号相减,得到差分信号的迹线。
这种方法相对安全一些,因为示波器始终保持接地。然而当共模信号相对较小时,测量会受到一定的限制,因为此时使用的两个探头输入通道之间的增益失配,共模抑制比较低,大约不到 20 dB(10:1)。
进行安全精确的浮置测量,最好使用差分探头或差分放大器。差分探头提供较高的共模抑制比,通常达到 80 dB 或 10,000:1 甚至更高,因此您可以测量大共模信号中隐藏的小差分信号,实现适当的测量精度和高灵敏度。使用动态范围和带宽足够满足应用需求的差分探头,可进行安全和精确的浮置测量。
示波器功率测量交流耦直流偏 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)