HH52P型电磁继电器动态特性监测方法的研究
作者/ 李铁成 姚芳 河北工业大学 河北省电磁场与电器可靠性重点实验室(天津 300130)
摘要:本文基于LABVIEW开发了一套电磁继电器动态特性监测系统。电磁继电器吸合暂态过程依次为触动阶段、吸动阶段和蓄磁阶段。通过继电器线圈时间常数的动态变化特性可以实现对继电器吸合过程中触动阶段、吸动阶段和蓄磁阶段的辨识。因此,根据时间常数的物理意义,将线圈时间常数和衔铁触动时间的算法嵌入到该监测系统中,达到了对电磁继电器吸合过程动态特性监测的目的。经实际测试,该系统运行稳定,完成了对试品吸合过程动态特性的监测和特性参数的采集分析。
引言
电磁继电器一般由电磁系统、弹簧系统、触点系统、支架及外壳组成,电磁、弹簧及触点系统的协同配合是继电器可靠动作的关键。可测性参量中,除了触点电气参量,线圈电气参量中也蕴含能反应整机性能的动静态信息。继电器吸合暂态过程中,线圈电感和线圈时间常数不断变化,其变化规律与衔铁运动和线圈电流的变化紧密相关。
在以性能退化规律发现为目的的直流电磁继电器全寿命试验研究中,需实时测录吸合过程线圈和触点的电气参量波形,可从中提取反应继电器整机及子系统性能的性征参数。本文以吸合过程线圈电流和触点电压为电气参量,理论研究从中提取吸合过程动态性征的方法及实现方法。
1 直流电磁继电器吸合过程暂态分析
电磁继电器的吸合过程一般持续几毫秒,均很短暂。直流电磁继电器的吸合过程是阶跃响应过程,该过程是从其释放状态过渡的。衔铁吸动后,气隙会减小,影响到磁路、磁链及等效电感,衔铁运动速度会产生反电动势,使得线圈电流在过渡过程呈非线性性征。
1.1 电磁继电器吸合过程暂态建模
电磁继电器吸合过程暂态等效电路为一恒定电阻和时变电感的串联模型,如图1所示。根据等效模型可知,直流电磁继电器吸合过程的电压平衡方程为:
1.2.2 吸动阶段
BD段以衔铁运动为特征,起于衔铁开始运动时刻,止于衔铁和铁芯稳定闭合时刻,称之为吸合阶段。
在吸合阶段,电磁吸力大于弹簧反力,衔铁向铁芯运动,产生反电动势,工作气隙减小,磁路参数改变,磁芯磁场强度随气隙减小而增加。吸合阶段公式(1)所示的电压平衡方程变形为:
(2)
式中:V为衔铁吸合速度,x为衔铁行程,L2为线圈电感。
在BC段,衔铁吸动速度慢,反电动势小,直流源U足以支撑线圈储能和衔铁运动所需的能量,此时表现为线圈继续储能(电流i增大),但储能速度减缓(di/dt减小);在C点,线圈电流i达到极大值点,增速di/dt为0,直流源U仅能支撑衔铁运动v需要的能量;在CD段,衔铁运动速度快,反电动势增加,必须由线圈和直流源共同提供其快速运动需要的能量,di/dt减小为负值,i减小;在D点工作气隙最小,衔铁停止运动,反电动势为0,公式(2)中电感L2对x的微分项消失。
1.2.3 蓄磁阶段
DE段起于衔铁停止运动时刻,止于线圈电流变化率di/dt为0的E点,称之为蓄磁阶段。
在蓄磁阶段,工作气隙最小,线圈电感常数,时间常数恒定,公式(1)中对L的微分项不存在,线圈电流指数规律增加,电磁系统储蓄磁场能量,电磁吸力增加,确保衔铁与铁芯处于稳定闭合状态,直至线圈电流等于U/R。由于磁芯气隙的消失,整体磁芯的磁场强度较之触动阶段增加,因此,L2比L1大,导致时间常数增大,过渡过程变缓,电路时间常数τ2=L2/R恒定。
1.2.4 吸合过程暂态分析的实验验证
对同一台直流电磁继电器试品进行线圈电压U的通电试验,之后分别固定衔铁于工作气隙最大位置和最小位置,进行线圈电压U的通电试验。试验过程均测录线圈电流波形,试验结果如图3所示。
对图3中的三条线圈电流波形进行拟合,均呈指数规律,时间常数为4.98ms、5.03ms和8.32ms,推算电感分别为3.35H、3.38H和5.59H。
2 继电器吸合过程中的时间参数测试
2.1 基于物理意义的时间常数求解
电磁继电器的线圈时间常数在衔铁不同状态下是变化的,下面根据继电器衔铁固定于最大张角时的线圈电流来分析时间常数的意义。图4中P为曲线任意一点,若从P点以tanθ为斜率的直线上升到电流稳态值,所用时间为T2-T1=τ,即从曲线任意一点以该点斜率匀速上升到最终稳态值所用的时间就是时间常数τ。
将示波器采集的线圈电流数据按时间序列排列,两个点之间的步长为0.25ms,设电流值Ii为I0,I1,I2,I3…,时间ti为t0,t1,t2,t3…。选取公式(3)来计算,线圈电流波形在任意一点处的斜率k:
(3)
在获得了线圈电流的斜率后可以进一步求线圈电流在每一刻的时间常数。设在ti时刻斜率直线的斜截式方程为:
(4)
式中:b为以k为斜率的直线的截距。
根据上文
电磁继电器 吸合过程 时间常数 触动时间 LABVIEW 201705 相关文章:
- 一套热计量仪表温度控制系统的设计方案(03-08)
- 具有负时间常数的数字可编程增益放大器设计(08-19)
- 基于LabVIEW RT的自定义流程测控系统(10-30)
- 基于LabVIEW的语音分析平台的实现(10-30)
- 基于示波器卡和LabVIEW的马达编码器测试系统(11-06)
- 基于虚拟仪器的网络虚拟实验室构建(11-06)