运算放大器电路中固有噪声的分析和测量(五)
计算在图 5.13 – 5.14 中列出的测量结果 —— –10 dBm信号的电压有效值。
从图 5.13 – 5.14 中,我们可以看出,当分辨率带宽降低时,固有噪声则从 –87 dBm 增加到 –80 dBm。另一方面,当分辨率带宽发生改变时,频率处于 67 kHz 和 72 kHz 时的信号幅度并未发生改变。固有噪声之所以受分辨率带宽的影响,是因为其为热噪声,因此,带宽的提高也增加了热噪声总量。另外,由于信号波形为正弦波曲线,而且不管带宽如何变化,带通滤波器内部的振幅都会保持恒定,因此,频率处于 67 kHz 和 72 kHz 时的信号幅度并不会受分辨率带宽的影响。因为我们必须清楚在频谱密度计算中不应该包含离散信号,所以,有关噪声分析方面的特性应引起我们足够的重视。比如,当测量运算放大器的噪声频谱密度时,您会发现频率在 60 Hz(功率上升线)时出现的一个离散信号。因为这个 60 Hz 的信号并非频谱密度,而是一个离散信号,所以它并未包含在功率噪声频谱密度曲线中。
图 5.15:将分贝毫瓦转化为电压有效值 |
图 5.16:将分贝毫瓦转化为电压有效值 |
一些频谱分析仪同噪声频谱密度一样,可以 nV/rt-Hz 为单位显示频谱幅度。但是,如果不具备这种功能,我们可以用频谱幅度除以分辨率噪声带宽的平方根来计算频谱密度。需要说明的是,通常我们需要一个换算系数,将分辨率带宽转化成分辨率噪声带宽。图 5.17 给出了将分贝毫瓦频谱转化成频谱密度的方程式。图 5.17 还给出了将分辨率带宽转化成噪声带宽所需的换算系数表。图 5.18 显示了将示例频谱分析仪中的频谱转化为频谱密度的实例。
图 5.17:将 dBm 转化为频谱密度的方程式 |
此表摘自安捷伦频谱分析仪测量和噪声应用手册 1303 页 [1]
图 5.18:将 dBm 转化为频谱密度的方程式 |
图 5.19:频谱分析仪测量结果向频谱密度转化的实例 |
图 5.20 关闭平均值功能时的频谱分析仪 |
图 5.21 平均值 = 2 时的频谱分析仪 |
图 5.22 平均值 = 49 时的频谱分析仪 |
总体评价
这是一款先进的数字频谱分析仪,其采用 FFT 来产生频谱。其可以测量极低的频率,适用于 1/f 等方面的测量工作。
这是一款款式较老的模拟频谱分析仪,其采用超外差接收技术产生频谱。截止频率较低,为10Hz,因此其不适用于典型的运算放大器 1/f 等方面的测量工作。
图 5.23:两款不同频谱分析仪的技术规范比较 |
本文介绍了用于噪声测量的几款不同型号的设备,重点阐述了设备的技术规范以及与噪声有关的主要运行模式。需要特别说明的是,虽然探讨的是具体型号的设备,但是其中的工作原理适用于大部分的设备。本文旨在帮助您在选择噪声测量设备时,应考虑的主要规格参数。在第六部分,我们将列举使用该设备的实际应用范例。
感谢
特别感谢 TI 的技术人员,感谢他们在技术方面所提供的真知灼见。这些技术人员包括:
- 高级模拟 IC 设计经理 Rod Burt
- 线性产品经理 Bruce Trump``
- 应用工程经理 Tim Green
- 高速产品市场开发经理 Michael Steffes
参考书目
[1] 安捷伦频谱分析仪测量与噪声应用手册 1303 页,2003 年 12 月版(网址:www.agilent.com)
[2] 概率与统计参考,第三版,作者:Robert V. Hogg 和 Elliot A Tanis。由麦克米兰出版公司 (Macmillan Publishing Co) 出版。
[3] 低噪声电子系统设计,作者:C. D. Motchenbacher 和 J. A. Connelly,由 Wiley InterScience 公司出版。
作者简介
Arthur Kay 先生现任 TI 高级应用工程师,专门负责传感器信号调节器件的技术支持工作。他于 1993 年毕业于乔治亚理工学院 (Georgia Institute of Technology),获电子工程硕士学位。
- DMM自动断电开关(11-09)
- 适合高效能模拟应用的线性电压稳压器(07-19)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 以太网供电芯片:合规与超规(07-25)
- 大功率LED照明恒流驱动电源的设计(10-15)
- 多重转换:冗余电源系统电流限制的一种新方法(12-24)