微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 新型电力电子技术功率模块特征与应用

新型电力电子技术功率模块特征与应用

时间:07-02 来源:互联网 点击:

1 应用智能型功率模块势在必行

功率模块有助于大功率应用实现可靠的集成化系统布局。智能型功率模块将分立功率半导体器件和驱动器集成到一个封装中,能够减少在设计上花费的时间和精力,保证其电器产品拥有可靠的功率电子部件。这种集成能够缩短产品上市时间。

在电力电子技术中,开关电源占有重要地位,而现代电力电子技术的繁荣与开关电源(特别是高频开关电源)的发展紧密联系在一起,高频化是现代电力电子技术焦点之一。但现代高频开关电源应用空间迅速扩展,都开始将注意力转向以高频变换为代表的现代电力电子技术,许多新的应用领域中其热点也陆续发展并选中高频开关电源(DC/AC)。

在消费电器和一般工业应用的低功率电机驱动领域中,采用转模(transfer-molded)封装的智能功率模块是目前的发展趋势。

在上述这些应用领域中很重要的是要求高可靠的高频大功率的开关电源。根据现代电力电子技术关于高频电源电路应集成化、智能化及模块化的又一特点,纵观目前市场,应用智能型功率模块是势在必行。

如今智能功率模块涵盖0.05kW至7kW的功率范围,具有紧凑性、功能性、可靠性以及成本效益。通过使用铜直接键合(DBC)基底的转模封装,不仅能够提高功率密度,并且在单一封装中便可实现三相逆变器、SRM驱动器和功率因数校正等各种电路拓扑。本文将从智能功率模块的核心技术(IBGT技术)及其应用作分析介绍。

2 智能功率模块的核心技术

2.1新的IBGT技术

功率模块系列集成了新的IBGT技术,达到了产品的额定值和工业标准要求的特性,开关性能和应用强韧性十分优异。因为模块化系统特性,如DBC衬底、塑封设计、芯片布线和凝胶涂料,该解决方案在任何环境下都有极佳的性能表现。

由于IGBT技术的进步,智能功率模块(SPM)系列一直不断地经历着升级。随着亚微米设计规则的引入,不仅芯片尺寸减小的速度加快,同时电流密度大幅度地增加。最新一代的IGBT芯片实现了关断损耗和导通压降之间更好的性能平衡关系,同时确保拥有足够的SOA。图1表示IGBT技术方面的改进。显然,V5 IGBT具有出色的器件性能,关断损耗与导通压降均小,从而可以在更小的封装中增大功率容量。

图1 IGBT技术方面的改进

低功耗运作常常需要更快的开关速度,这造成了恢复电流的增加和dv/dt的升高,会带来较大的电磁干扰(EMI)、高浪涌电压和电机泄漏电流。在SPM系列中,已经考虑了EMI问题,并优化了栅极驱动的设计,牺牲高开关速度以控制集成IGBT的开关速度。正是由于IGBT具有低导通压降,能够保持总体功耗不变,同时实现低EMI特性。此外,为了获得更佳的ESD保护,在栅极和发射极之间使用了具有足够的箝位电压的多个背靠背二极管。使用集成式保护二极管,智能功率模块都达到工业标准ESD电平。

2.2关于智能功率模块的驱动器IC

由于成本效益的原因,高压IC (HVIC)和低压IC (LVIC)设计具有最好的必要功能,特别适合于消费电器的逆变器驱动。在设计方面的考虑:包括借助精细工艺技术减小芯片尺寸;由3V馈入微控制器直接驱动有效的“高电平”接口;低功耗;更高的抗噪声能力;抗温度变化的更好稳定性等等。

HVIC的一个特性是内置高电平偏移功能,如图2所示. 能够将来自微控制器的PWM输入直接转换至高边功率器件。此外,使用外部充电反向电容CBS,可以采用单一控制电源VB驱动智能功率模块。

图2 高边驱动器配置

另一方面,HVIC对于外部噪声敏感,因为其信号是通过脉冲信号和SR锁存器进行转换的。对于这种脉冲驱动HVIC,高dv/dt开关驱动IGBT是最危险的开关类型。假设从漏极看LDMOS寄生电容是CM,高边IGBT的导通dv/dt是dVS/dt,CM必须采用大电流充电,才能使LDMOS漏极电压跟随快速变化的VB电压,该电压通过自举电容CBS与VS耦合。大充电电流在R1和R2上引起过大的压降,从而误触发SR锁存器。

为了克服噪声敏感性,开发了具有独特拓扑的噪声消除器,如图2所示。V/I转换器将电平变换器的输出转换成电流信息。对于具有高dv/dt的共模噪声,V/I转换器会给出相同的输出。但是,对于正常运作,V/I转换器输出是互不相同的,因为两个LDMOS中只有一个工作于正常的电平转换器运作状态。这样可以方便地确定V/I转换器的输出是否是由于噪声引起。一旦噪声消除器识别出有共模噪声侵入,它便吸收V/I转换器的电流输出。然后,V/I转换器重建电压信号.这个信号来自V/I转换器的电流输出,在VB和VS电源轨之间摆动。最后,经放大的信号送到SR锁存器。

V/I和I/V转换的另一个优点是允许负VS电压不再受电路的阈值电压支配。由于其独特的拓扑,HVIC展

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top