一种基于超级电容器储能的光伏控制器的实现
因此,可以进一步将超级电容器模型简化为理想电容器和等效串联内阻的串联结构,如图2(b)所示。
RC等效模型结构简单
其中,Ns为串联器件数,Np为并联支路数。
3.3 超级电容器储能系统
在系统中,超级电容器具有两大功能。首先,作为能量储存装置,在白天时储存光伏电池提供的能量,在夜间或阴雨天光伏电池不能发电时向负载供电;其次,与光伏电池及控制器相配合,实现MPPT。
超级电容器储能系统主要由太阳能电池板,超级电容器,开关,DC-DC变换器,放电回路及检测控制电路几部分组成。图3为超级电容器储能系统的原理框图如图3所示。
4.1 MPPT控制方法
光伏电池最大功率点控制方法有很多种,如CVT(恒压控制),电压扰动法(也称登山法),导纳增量法,二次插值法等,各有优缺点。本设计采用的是电压扰动法,此方法控制思路简单,容易实现,可实现对最大功率点跟踪的控制,提高系统的利用率。
电压扰动法的原理是通过将本次光伏方阵的输出功率和上次的相比较,来确定是增加还是减小光伏方阵工作电压来实现MPPT。如图4所示,若 △P>0,说明光伏电池工作在峰值电压左侧,则需要继续增大工作电压,从左边向最大功率点靠近;若△P0,则说明光伏电池工作在峰值电压右侧,需减小工作电压,从右侧向最大功率点靠近;若△P=0,则说明光伏电池正处于最大功率点附近,于是保持工作电压不变即可。
4.2 控制器主回路硬件的实现
图5为控制器主回路及控制电路框图,它采用脉宽调制的方法,通过控制开关管Q的开通状态将光伏电池的直流信号变换成一个可变占空比的脉冲信号,从而改变光伏电池的等效负载,进而达到MPPT功能。
采用降压斩波电路作为MPPT控制的主回路,是考虑到降压斩波电路容易控制,完全可以实现最大功率跟踪功能。以本系统为例说明:系统选用25 W光伏电池,最大功率点电压为17.5 V。光伏电池电压受光照及温度的影响,即使是在恶劣的环境下S=200 W/m2,T=70℃,最大功率点电压也为14.4 V,大于13.5 V的超级电容器组,因此完全能够达到MPPT功能。
系统所用的单片机为Silicon 公司生产的C8051F310单片机。C8051F310芯片是完全集成的混合信号片上系统型MCU芯片,具有高速、流水线结构的8051兼容的CIP- 51内核(可达25 MIPS);全速,非侵入式的在系统调试接口(片内);真正10位200 kS/s的25通道单端/差分ADC;具有高精度可编程的24.5 MHz内部振荡器;16 kB可在系统编程的FLASH存储器,1 280 B片内RAM;硬件实现的SMBUS/I2C,增强型SPI串行接口和增强型UART;4个通用的16位定时器;具有5个捕捉,比较模块和看门狗定时器功能的可编程计数器/定时器电池(PCA),每个模块都可以独立地实现8位或16位脉宽调制功能;具有19个I/O端口(容许5 V输入);2.7~3.6 V的工作电压,70%的指令执行时间为一个或两个系统时间周期,具有扩展的中断系统,是一款功能强大,性价比高的芯片。
该控制器通过单片机A/D采样通道将从主回路采样到的光伏电池电压,电流及超级电容器组端电压,经转化采到单片机内,并计算出光伏电池的输出功率。然后根据MPPT控制方法,从单片机口输出一个频率约为24 kHz的PWM波,此脉冲波通过光耦TLP250来驱动开关管,最终达到利用MPPT控制来给超级电容器充电。
该系统负载为大功率LED灯,超级电容器给LED灯供电。当控制器检测到晚上或天阴,即单片机给出控制信号,使超级电容器开始放电,LED灯亮。因为LED灯在工作过程中要求工作电压或电流恒定,因而,需要在超级电容器与负载之间设计稳压器或恒流器。该系统中选用了一种降压芯片及一种恒流芯片,使LED灯工作在稳定状态。
超级电容器的放电问题,理论上可以完全放电,但事实上会影响超级电容器的寿命,而且负载额定电压对超级电容器的电压也有一定的要求,因此还是要设计控制器的过充,过放功能。防止超级电容器过充,过放也是通过单片机检测超级电容器端电压,看其是否超过了设计的限定值,如果超过了,则同样通过单片机发出控制信号,控制充电回路及放电回路,达到防过充、防过放的目的。
从图5中可以看到,二极管D1起到防反充的作
控制器 实现 储能 电容器 超级 基于 LED,电池 相关文章:
- 嵌入式碟式太阳能热发电控制器研制与应用(06-28)
- 基于金升阳电源的智能窗帘控制器的设计(03-20)
- 基于ATmega16 的电液伺服阀反馈控制器设计方案(12-09)
- 数字控制器提高DC/DC效率的策略分析(12-09)
- NCV8876汽车级高频启停升压控制器应用研究(12-09)
- 基于PIC16C711的脉冲点火控制器设计(12-08)