燃料电池车用大功率DC/DC变换器电磁兼容
引言
目前,燃料电池电动汽车(FCEV)成为我国汽车科技创新主攻方向。燃料电池电动汽车动力系统主要由燃料电池发动机,DC/DC变换器,蓄电池,电机控制器(变频器)及电机,整车控制器,数据采集系统及CAN总线组成,如图1所示。其中DC/DC变换器可以对燃料电池的输出进行控制及能量的传递与转换,成为燃料电池电动汽车关键零部件之一。在燃料电池电动汽车运行过程中,DC/DC变换器所处的电磁环境十分复杂,各种形式的电磁干扰很多,严重影响了DC/DC变换器的正常运行。因此,研究FCEV用DC/DC变换器的电磁兼容性对DC/DC变换器乃至燃料电池电动汽车的可靠运行具有重要意义。
大功率DC/DC变换器主要干扰源及电磁兼容设计
FCEV用DC/DC变换器是大功率变换装置,其电磁兼容性在整个FCEV电磁环境中具有重要影响。FCEV用DC/DC变换器工作时对外界产生强大的电磁干扰,不仅对整个FCEV系统造成干扰,而且也会影响DC/DC变换器自身控制系统的正常工作。因此为了提高整个FCEV系统性能,必须对FCEV用DC/DC变换器的电磁兼容性进行研究,对其产生的电磁干扰(EMI)进行有效的抑制。
大功率DC/DC变换器主要干扰源
FCEV用DC/DC变换器的功率一般比较大,通常选择IGBT为功率开关管。功率开关管IGBT工作过程中产生高的du/dt和di/dt以及浪涌电流和尖峰电压[1],这是FCEV用大功率DC/DC变换器产生电磁干扰最根本的原因。另外功率开关管开通和关断瞬间,由于分布电感和分布电容的存在,电感电流容易发生高频振荡,这些因素都会产生强大的电磁干扰,这在FCEV用大功率DC/DC变换器中表现的尤为明显。这种电磁干扰严重影响整车控制器与CAN通信,导致CAN通讯频繁报错,无法正常通讯。CAN通讯受干扰后的传输波形如图2(a)所示。从图中可以明显看到,变换器开关噪音叠加在CAN通讯脉冲上,并且幅度很大。此外,严重的电磁干扰也会使大功率DC/DC变换器输出纹波过大,纹波过大直接影响大功率DC/DC变换器的性能[2]。图2(b)是用示波器采集到的变换器未经滤波处理的输出电压波形,从图中可以看到,输出电压上叠加了大量的开关噪音。
大功率DC/DC变换器电磁干扰的抑制措施
目前,抑制大功率DC/DC变换器电磁干扰的主要措施有减小干扰源的电磁干扰强度、切断电磁干扰传播途径、敏感元器件合理布局以及屏蔽和信号接地设计等。
● 减小干扰源的电磁干扰强度
大功率DC/DC变换器产生电磁干扰的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率(du/dt和di/dt)。最常用的方法就是增加吸收电路[3],吸收电路能够抑制电磁干扰,其基本原理就是开关管关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。软开关柔性换流技术是近年来研究的热点[4],在FCEV用大功率DC/DC变换器中,采用无源谐振软开关柔性换流技术,可以大大降低开关过程中的du/dt和di/dt,不仅减小了开关损耗,而且还大大降低了电磁干扰。另外通过优化功率开关管IGBT驱动参数,合理选择功率开关管IGBT的驱动电压和栅极驱动电阻,也可以降低大功率DC/DC变换器电磁干扰。
● 切断电磁干扰传输途径
FCEV用大功率DC/DC变换器产生的电磁干扰以传导干扰为主。目前最常用的方法就是在DC/DC变换器输入和输出端加装滤波电容器。如图3,为了减小FCEV用大功率DC/DC变换器对CAN通讯的干扰,在变换器输入输出端加适量的接地电容,CAN通讯波形得到有效改善。
在FCEV用大功率DC/DC变换器中,输出电压或电流纹波是电源的重要指标。图4在大功率DC/DC变换器的输出端连接CLC滤波器后,变换器输出电压波形平稳,开关噪音减小,滤波效果十分明显。
此外,在FCEV用大功率DC /DC变换器中开关管IGBT以十几千赫的频率开通和关断,电路中可能产生高次谐波电流,影响燃料电池的输出电压。因此DC/DC变换器输入和输出端通常并联电容(电解电容与无感电容并联)。无感电容可以滤除线路中由于谐振而产生的高频辐射干扰,而电解电容用来稳定燃料电池输出电压及降低辐射强度,同时减小DC/DC变换器输出电压纹波[5,6]。
● 敏感元器件合理布局
FCEV用大功率DC/DC变换器中包含很多敏感元器件(比如电流霍尔传感器),这些敏感元器件对电磁干扰非常敏感。在FCEV用大功率DC/DC变换器主电路实际布局中,通常将敏感元器件布局在离功率开关管IGBT、续流二极管和高频变压器尽量远的地方、同时将信号线绞合并缩短布线距离,这样可以大大降低电流信号的噪音,提高系统的控制性能。同时,在FCEV用大功率DC/DC变换器布线方面,也要尽量将敏感信号线路远离功率开关管IGBT、续流二
变换器 电磁兼容 DC 大功率 电池 车用 燃料 相关文章:
- 大功率储能型有源箝位反激变换器的研究(02-28)
- 六种基本DC/DC变换器拓扑结构总结(12-12)
- 工程师自我养成之反激变换器控制环路仿真设计(12-09)
- 全桥变换器结构 软开关移相电源设计(12-07)
- 单级三相高频隔离AC/DC变换器设计(12-06)
- 一种电流温度稳定度小于1μA/℃的V/I变换器(05-27)