微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电压电流变送集成电路AM462原理及应用

电压电流变送集成电路AM462原理及应用

时间:04-23 来源:互联网 点击:

AM462-二线制的变送电路
本文描述的电压控制的电流源是由Analog Microelectronics (AMG 公司)开发生产的AM462 专用集成电路,它的工作电源最大可达35 V。AM462 可以将测量的单端接地电压信号转换变送成工业标准的电流输出4…20mA(图3)。为了能弄清AM462 转换变送集成电路和它的一些附加功能,这里先介绍一下AM462 电路。

作为核心电路的AM462(图4)是一个多级放大电路和一些其他功能电路以及保护电路所组成,它们都可以任意选用。这些以模块形式组成的电路比如运算放大器,电压电流转换,参考电压源,参考电流源,可以通过外面电路连接组合使用也可以单独使用(见图5 和图6)。

图5:AM462 的二线制4-20mA 的应用电路图
下面简要介绍AM462 的各个功能模块情况:

运算放大器OP1 用来放大单端接地电压信号(正信号),放大倍数可通过外接电阻来调整。
电压电流转换模块提供一个电压控制的电流信号到集成电路的输出端,该信号直接控制外置的三极管并最终输出工业标准的电流信号。由于功耗的原因将三极管外置,在极性反接时一个附加的二极管起到保护作用。
AM462 上的参考电压源可为外接电路比如传感器,微处理器等提供工作电源,这样也简化了二线制的电路。参考电压源可提供5 到10V 的电压并且可调。
附加的运算放大器OP2 可用作为电压源或电流源来使用,也可以为外接电路提供工作电源。OP2 的正输入端是连接在内置的固定电位VBG 上,这样可以通过外面的二个电阻调整输出的电压或输出的电流大小。
AM462 的参数计算和应用举例在产品说明书中有详细介绍[1]。
AM462 具有很多保护功能,比如OP1 具有输入信号过载保护功能。在整个工作电压范围内,电流输出级具有极性保护功能和输出电流限制功能并保护三极管不被损坏。要注意在二线制方式中,一些附加的电流负载比如在图6 中,OP2 的工作电流和集成电路本身的工作电流都被限制在4mA 之内,就是说系统的总工作电流(AM462 和所有外接的元器件)不能超过IOUTmin = 4mA,特别要考虑到环境对工作电流的影响比如环境温度,它会使工作电流发生变化。

图6:AM462 与测量电路(AM462 提供3.3V 工作电压)

电流信号变送电路AM462 的实际应用
图6 是AM462 的电流信号变送电路的实际应用电路图。这里假定测量电路的工作电压为3.3V,它由AM462 提供。GND 是变送电路所有元器件包括电流源在内的一个虚拟的参考电位(虚地)。用于过压保护的电容器和齐纳二极管也是相对于GND 而言的。GND 通过负载电阻RL 与系统地Ground(大地)相连,它们之间的电位是不等的。
GND ≠ Ground
VCC 是集成电路AM462 的工作电压,VA 是负载电阻的电压降,它们与外加的对大地而言的工作电源VS 的关系为:
VS = VA + VCC min.
而VCCmin 为:
VCCmin =VRef +1V 和 VS = 6 /11…35V
有多少检测仪器可以接入电流回路和传输电缆可以有多长由下面的式子给出(见图7)。

Rl 是电缆电阻,RL 是负载电阻,VM 是检测仪器二端的电压降,由图6 可知:
VS ≥VCC min +VA 或者 VAmax = VS-VCC min

图7:控制系统的电流变送技术应用
如果RL , VM 和 VS 已知或事先给定,那么根据公式

(ρ = 电导率,铜ρ =0,016 Ωm²/m;l 是电缆长度,单位是米;A 是电缆的截面积,单位是mm²),就可以算出电缆的最大长度或者算出可允许串入的检测仪器数量。考虑到电磁干扰的影响,有关负载电阻RL 的值应该是低阻值的,但也受到测量仪器的分辨率的限制(在小电流时负载电阻RL 上的电压降测量)。
图7 是一个传感器信号二线制电流变送传输技术应用电路图。在电流回路中串联了相应的检测设备,就像在工控设备中比如PLC 等所需要的一样。

总结
信号数字化传输方法越来越多,但是模拟电流4-20mA 信号的传输在今天仍然是工业上最普遍的抗干扰效果很好的一种信号传输方法。
本文介绍了二线制变送电路设计和信号传输中要注意的问题。通过专用变送集成电路AM462 的例子说明了如何简单地开发一个电流变送电路和电流信号传输本身所能带来的好处。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top