高速PCB中旁路电容的分析
,会由于种种原因,例如电容的寄生电感,PCB连线的固有电感等,使得环路的阻抗不为零,这样电流流经这一环路时将产生电势差,如果电流是变化的,则将产生辐射,对系统产生干扰。为了给电源滤波,在电路设计中常常要在电源和地之间加上一些旁路电容,在回路中增加旁路电容主要有两个目的,一是增加环路中存储电荷的能力,以免瞬间电流过大,产生地弹噪声。二是适当的放置旁路电容的位置,可为噪声信号提供就近的地回路,减少电流环路的面积,从而减少了环路的电感。采用了旁路电容的回路中,由于欲滤除的噪声频率通常是高频交流信号,因而这样的回路仍旧将会对外产生辐射。为了减少这一辐射,我们需要尽可能的降低回路的阻抗,必须合理放置旁路电容的位置。图4显示了由于滤波电容放置位置不当产生的大电流环。
图5为电流环的模型。从电流环模型中我们可以看出,环路中存在寄生电感,它们在高频状态下表现为环路的阻抗可导致供给电源产生尖峰,并会辐射电磁波从而干扰系统的其他部分。环路中Ll为电容管脚引线的封装电感;Lpc为电容管脚到器件电源或者地管脚之间的PCB传输线的寄生电感;Lic为器件管脚引线的寄生电感。另外,在前面我们讨论过电容本身也是具有寄生电感ESL的。这样回路的总电感为:L=2Ll+ 2Lpc+2Lic+ESL。由于环路的寄生电感将会给整个系统带来电磁干扰,产生电压尖峰,这个电压尖峰值同串联电感之间存在一定的关系.
这里V为最大噪声电压尖峰值,△t为瞬态持续时间,△I为器件瞬态电流,△t、△I值可以从器件手册中查得。例如74HC的瞬态电流典型值Icc为20mA,输出信号从零上升到Icc或者从Icc下降到零需要的时间为4ns,如果现在我们试图控制感性噪声的尖峰在100mV以内,那么由上面的公式我们可以求得串联电感L的最大值不超过20nH。在PCB板设计时,设计者可以通过以下几种方式来降低回路电感:选择寄生电感比较小的电容,降低ESL(不同型号电容的寄生电感值见表1);尽量使用贴片电容以减小电容引线长,降低Ll值;合理的放置电容,使用电源层或地平面层代替电源或者地传输线,减小电源地传输线电感Lpc;合理选择集成器件的封装,以降低Lic值,比如对于器件ADV478来说,PLCC封装的寄生电感比DIP封装的寄生电感要小2nH到3nH。
4 电源扰动及地弹噪声的产生机理
图6为一个简单的图腾柱I/O口电路,驱动一个串联源端匹配的传输线。图中LV和LG为器件电源管脚和地管脚的封装电感,A、B为两个场效应管,作为开关使用。假设初始时刻传输线上各点的电压和电流均为零,在某一时刻器件将驱动传输线为高电平,这时候器件就需要从电源管脚吸收电流。在时间t1,合上开关A,电流从PCB板上的VCC流入,流经封装电感LV,跨越开关A,串联终端电阻,然后流入传输线,输出电流幅度为(1/2)VCC/Z0。电流在传输线网络上持续一个完整的轮回(round-trip)时间,在时间t2结束。至此以后,整个传输线处于电荷充满状态,不需要额外流入电流来维持。当电流瞬间涌过封装电感LV时,将在结点V1处导致芯片电压的扰动。在时间t3,关闭开关A,这一动作不会导致脉冲噪声的产生,因为在开关A打开的瞬间是没有电流流过的。同时,合上开关B,这时传输线、地平面、封装电感LG以及开关B形成一环路,有瞬间电流流过开关B,这样在结点G1处产生地弹扰动。如果在V1和G1之间加上一旁路电容(放置在芯片内部)的话,可以使得V1点处和G1点处的瞬态电压扰动相同,这样在每一次开关切换时,V1点和G1点均会产生电压扰动,然而幅度将会减半。
在高速PCB设计中,在电源管脚附近放置滤波电容就是为了消除电源扰动以及地弹噪声的。系统加上旁路电容以后,由于电容寄生电感的存在,环路的总电感将增加,可能产生的噪声强度也就会更大。因此设计者应该尽可能的选择寄生电感小的旁路电容并合理的将其放置在PCB中。
5 器件电源管脚旁路电容的放置
当电流在瞬间通过器件电源管脚流入器件或者通过地管脚流入地时,由于器件封装电感的存在以及电源供给环路中电感的存在,将会产生电源扰动和地弹噪声,因此需要在电源管脚附近放置滤波电容以达到消除电源扰动以及地弹噪声目的。
从上文可知,电源扰动和地弹噪声主要来自于芯片的引脚,由于芯片的输出阻抗(芯片的电源或者地管脚的输出阻抗)一般要比电源平面或者地平面的阻抗大得多(如果不是这样的话,将会有大量的电源、地噪声产生),因此可将芯片看作一个噪声源,对于一块合理设计的电路板而言,无论在什么时候,当噪声源的阻抗比负载大得多的时候,噪声源可以看作一个电流源
- 具扩展频谱频率调制的低EMI DC/DC稳压器电路(12-24)
- EMI/EMC设计讲座(三)传导式EMI的测量技术(07-20)
- 扩展射频频谱分析仪可用范围的高阻抗FET探头(07-14)
- 开关电源基于补偿原理的无源共模干扰抑制技术(08-27)
- 开关电源的无源共模干扰抑制技术(11-12)
- 省电设计使DDS更适合便携应用(12-19)