功放设计中的检测及保护电路
摘要:射频功放作为通信系统的最末级,因大功率而极易损害。由于功率放大器是一种相对比较昂贵,且为比较脆弱的器件,因此在设计功率放大器时,应重点关注如何保护功率放大器,以避免静电、浪涌、过热过温、过压、过流、过载造成功放故障或者失效。本文详细分析了射频功率放大器的失效原因,并列举了工程上常采用的保护方式,通过模型分析,构建了功放的检测电路及保护电路,从而达到保护射频功放的目的。
关键词:射频功放;检测;保护电路。
0 引言
射频功率放大器是将发射机里的射频小功率信号,经过一系列的放大一激励级、中间级、末前级、末级功率放大级,获得足够大的射频功率的装置。射频功放是发送设备的重要组成部分。
功率放大器是一种比较昂贵的资源,具体体现在功率放大管比较昂贵。在整个无线发射链路成本构成来看,功率放大器的成本比例大于50%(绝大多数),而且功率越大,其所占成本比例就越大。
另外功率放大器的功率放大管是一种相对比较脆弱的器件,尤其是与低功率小信号放大管比较。其脆弱性主要体现在:静电敏感性高;热敏感性比较高;对射频过载比较敏感,即对射频输入功率过载比较敏感;对输出失配比较敏感。
由于上述原因,在设计功率放大器时必须考虑如何保护功率放大器,以避免静电、浪涌、过热过温、过压、过流、过载造成功放故障或者失效。
1 引起功放失效的原因
要对功率放大器实现有效的保护,必须要知道引起其失效的原因。功放失效的原因主要有以下几种:
(1)静电击穿引起的失效。运输、接触导致静电作用于功率管的电极,产生击穿效应,使器件永久失效。这种失效的避免可以从器件、单板运输、操作等过程中,采取防静电措施来解决。解决方法有:a.通过防止静电源的产生(比如保持空气的湿度);b.通过接地使静电源的静电能够有效释放而防止积累;c.通过采取静电隔离措施。
(2)过压引起的失效。过压会引起功率放大器的电极击穿或者处于不正常的工作状态。引起过压的情况有:a.功放直流馈电电路部分出现元器件失效,引起过压;b.与功放相关的控制和电源部分出现故障产生的关联效应,引起的过压。
(3)过流引起的失效。功放的工作电流超出其正常工作电流而引起的失效。
(4)过激励引起的失效。输入的功率电平超出功率放大器安全范围,会引起功放永久性失效。其结果是直接导致功放烧毁。
(5)负载不匹配引起的失效。负载开路、短路或失配使功放输出端呈现比较高的驻波分布,使射频能量不能有效地传输出去,大部分能量转换成热,造成热积累,一方面降低了功放效率,另一方面,将造成功放热烧毁。
(6)过热、过温引起的失效。由于散热不良或者环境温度过高引起功率器件失效。
2 功放保护电路设计类型
针对功率放大器失效的几种原因,相应的保护电路设计主要分为如下几方面:
(1)过压保护。此保护形式表现在电路上有:
电压钳位电路:设计合适的钳位电路可以使馈电电压限制在安全的范围内。
压敏电路:通过并联压敏电阻或者其他压敏器件,当电压超过压敏器件的临界电平时,压敏器件产生短路效应,拉低电平,从而达到保护的目的。
稳压电路:通过稳压电路使输入电压范围得到扩大。
”电压检测+过压判断+执行保护”的闭环保护形式。
(2)过流保护。过流保护主要有以下几种形式:
电源限流保护:如果给功率放大器馈电的电源模块具有限流功能,那么该限流功能能够防止功放出现过流。比如功放过激励或者自己的情况下,如果没有限流,功放会被自己或者过激励产生的大电流烧毁。
过流闭环保护:通过对功放的工作电流进行实时监测,一旦出现过流,自动切断电流,以达到保护功放的目的。
(3)过激励保护。当输入功率超过功率放大器安全工作范围时,对功放实施的保护。过激励保护的形式有:输入功率限幅,通过限幅器件实现;过激励闭环保护形式,通过对功放的输入功率进行实时监测,一旦发现功放过激励,自动切断输入信号或者自动大幅度衰减输入信号,以达到保护功放的目的。
(4)热保护。热保护是在出现温度过高或者过热的情况下,对功放实施的保护形式。热保护的方式是通过温度或者热检测电路对功率放大器的温度和热的情况进行监视,一旦检测的温度或者热超过门限值,就通过保护执行装置对功放进行保护。
(5)失配保护。失配保护是在功放输出失配的情况下,为避免失配对功放损害的一种保护电路形式。
3 功率放大器的保护模型
通过对各种功放的保护电路分析,一个完整保护电路基本上可以通过如图1所示的模型进行描述。该模型由以下几部分构成:
(1)状态监测部分。通过传感器实时跟踪相关状态的变化,为保护提供实时数据;
(2)比较判断部分。让来自状态监测的数据与预设的保护/告警/恢复门限进行比较,根据比较结果输出相应的数据到告警显示、保护执行机构或者通过通信口上报后台等;
(3)保护执行部分。根据来自比较判断的数据做出相应的保护动作。保护执行动作就是状态异常时,执行保护:状态恢复正常时,解除保护即自恢复。
此模型的基本工作原理为:状态监测部分通过传感器实时跟踪功率放大器相关状态变化,并将反映该变化的数据传给比较判断部分;比较判断部分对检测得到的数据与预设的告警、保护门限、自恢复门限进行比较,根据比较结果,输出命令至保护执行机构或者告警显示部分,另外将信息通过通信口上报后台。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)