LVDS32B的有源故障保护解决方案
,同时接收器的输出节点R被置为逻辑高。这种情况在图5中有说明。开始时信号A比信号B高400mV。当输入端极性变化,而且B比A高约50mV时,接收器的输出被置为低,同时故障保护定时器复位,重新开始计时。当定时器计满,由于信号B仅比信号A高50mV,所以FAILSAFE有效。图5表明,虽然B高于A,但是接收器输出节点R在极性变化后的600ns被置高(通常情况下应输出低)。图5说明了当有效输入信号丢失后,有源故障保护系统是如何工作的。
当故障保护功能起作用后,只要输入电压差小于80mV,那么窗口比较器和逻辑门仍然将输出置为高。如果输入端差分信号恢复,则窗口比较器的输出将被置为低,同时故障保护信号被置为高,然后接收器重新跟踪输入信号。图6说明了这一过程。开始时,信号B比信号A高50mV且FAILSAFE有效(故障保护信号驱动输出为高)。然后输入信号差值增大,使B比A高400mV,这时FAILSAFE变为无效,同时接收器开始跟踪输入信号,并驱动输出节点R为低。
如果输入信号恢复时主接收器状态没有转换,那么故障保护定时器就不复位。因此,如果随后的输入信号幅度减小,但不改变极性,那么故障保护系统将立即恢复对接收器输出的控制。如果输入有效信号导致了主接收器状态转换,那么故障保护定时器被复位,直到定时器达到最大值,才会检测输入信号是否有丢失。
注意,有源故障保护系统依赖于主接收器的滞后作用(50 mV),以便保持FAILSAFE有效。如果外部噪声大到使主接收器状态转换,那么故障保护定时器将被复位,且故障保护功能失效。直到输入噪声在整个故障保护定时周期内小于接收器的滞后,FAILSAFE才重新有效。
有源故障保护系统适用条件
在输入引脚短路(如电缆损坏)、开路(如没有使用接收器),或者当线路驱动器被禁用或移去后,输入引脚通过一个终端电阻连接在一起时,有源故障保护器件可确保输出置为故障保护状态。
下面是故障保护功能适用的情况:
输入引脚开路——在一点到多点或多点到多点结构中,未使用的节点可与总线分离。对于那些只使用了部分通道的多通道接收器,未使用的通道也可能开路。如果接收器的输入悬空,那么两个引脚在内部被拉至相同的电位。有源故障保护器件检测到这个情况并且使接收器的输出节点R置为逻辑高。
空闲总线——如果接收器连接到驱动器呈高阻状态(关闭)的空闲总线上,那么接收器的输入引脚将通过终端电阻被拉到几乎相同的电压。通常这个电压会接近接收器的差分阈值电压,任何外部噪声都可能使接收器的状态转换。有源故障保护功能可以检测到微弱的差分输入,并输出一个确定的状态。
输入引脚短路——线路故障(如电缆损坏)可能导致输入短路。有源故障保护功能检测到输入短路并且使输出变为高电平。
有源故障保护功能作用于整个接收器共模输入范围,在此范围内,总线偏压、地失调电压和共模噪声的存在是不容忽视的问题。
图7说明了接收器的两个输入端一起短路的情况。由于FAILSAFE有效,输出为高。两个引脚最初保持在地电位,然后共模电压尖峰耦合到两个输入上,但输出仍为逻辑高,这证明了有源故障保护功能作用于整个共模输入范围。
结论
本文讨论了一种新型的有源故障保护解决方案,它克服了以往其它方案中的局限。有源故障保护系统的总线负载非常小,因此不会象外部偏置网络那样降低驱动器输出信号的质量。有源故障保护系统不要求信号通道有内部偏置,因此不会增加接收器转换所需的差分输入,而一些集成式有源故障保护解决方案则会增加所需的差分输入。有源故障保护功能作用于整个接收器共模输入范围,并保证在存在共模噪声、直流偏置电压或系统地失调电压的情况下,输出一个确定的状态。
- 大联大控股世平推出高性能电机控制解决方案(04-11)
- “可持续性”模块电源解决方案(01-26)
- 反激式电源中的常见噪声来源及可操作的解决方案(12-27)
- 基于Fairchild和NXP产品的电源解决方案(12-10)
- 工业交换机行业电源解决方案(11-12)
- 电源测试一体化解决方案(09-28)