微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 输变电设备污闪问题的探讨

输变电设备污闪问题的探讨

时间:11-01 来源:互联网 点击:

自20世纪90年代以来,我国输变电设备防污闪工作取得了很大进展。各地不同程度地调整了输变电设备的爬电距离,相继绘制完成了电力系统污区分布图并得到执行,全国防污闪工作逐渐步人了规范化的轨道。正是由于这些工作的开展,才使得我国在多次周期性的污闪事故中未造成重大经济损失和社会影响。但是,我国防污闪工作未能达到完全杜绝大面积污闪事故的发生,其根本原因何在?如何才能防止和杜绝大面积污闪事故的发生?值得大家探讨。

  1大面积污闪事故的主要特点和原因

  自20世纪90年代以来,东北、西北、华北、华中、华东和华南都相继发生过大面积污闪事故,其主要特点和原因可归纳为部分线路绝缘配置偏低、天气恶劣、大环境污染降低了外绝缘强度、清扫质量不高。不同时间和地点发生污闪的设备也有很大差别。如1990年华北大面积污闪事故,输电线路主要发生在悬垂串上。变电设备故障多发生在母线、隔离开关、阻波器等支柱绝缘子上,或未涂RTV和未安装增爬裙或未及时进行水冲洗的设备上。2001年大面积污闪事故中辽沈地区主要集中在I-Ⅱ级污区;华北、河南主要分布在Ⅱ-Ⅲ级污区;京津唐、河北、河南和辽宁电网凡全线使用复合绝缘子的线路几乎都没有发生污闪。线路污闪与1990年华北大面积污闪比较耐张串较多。变电设备的污闪主要发生在支柱绝缘子上(占闪络总数的78.0%)特别是重污区双联支柱绝缘子。

  2问题的提出

  2.1清扫的局限性

  随着城乡电网建设和改造、三峡工程、西电东送以及全国跨地域电网的建设,必须正视这样的事实,对目前运行线路每年进行清扫越来越困难,对于穿越山区线路,特别是500kV线路更是如此。问题是现行标准GB/T16434-1996、JB/T5895-1991和GB5582-1993对污秽等级的划分和外绝缘选择皆是建立在清扫的基础上。虽然清扫是绝缘子串恢复绝缘强度最有效的防污闪措施,但是客观事实要求不应再将污绝缘设计建立在清扫的基础上,尤其是新建或待建的工程。

  2.2原污区分布图存在的问题

  现行污区分布图中划分污级的盐密是指由普通悬式绝缘子XP-70(X-4.5)及XP-160型所组成的悬垂串上的测得值。我国现运行线路已使用了玻璃绝缘子约4500万只(其中,南京国产线生产了900万片)、复合绝缘子约400万支。不同材质和型式的绝缘子自然积污特性与XP-70和XP-160不同,串型结构不同其积污特性也不同,且无系统的研究,这显然会对污级的确定产生较大偏差。另外,所测的盐密值大多是运行1年的最大盐密。以上问题可能会导致实际绝缘配置往往不到位。在今后的防污管理工作中,必须从根本上调整盐密测量和污秽等级的划分方法,重新制定污区分布图的绘制原则。

  2.3污闪的主要原因

  现今使用的绝缘子污耐压基础数据是从短串的污秽试验得到的,由于人工污秽电压闪络梯度与绝缘子串长呈不严格的线性关系。因此,以污耐压法进行污秽设计时,由短串结果推算至长串会带来很大偏差。长串试验结果表明,单片污耐压值低于由短串所确定值的40%。不同型式瓷、玻璃绝缘子的耐污秽特性并不随爬电距离的增加而成线性改善。对伞型不佳的绝缘子,虽爬电距离增加较大,但污耐压并未明显提高,有的反而降低。虽然爬电距离增加较大,但局部爬电距离在污秽和受潮2个条件作用下易被空气间隙放电短路,这充分说明爬电距离的有效性对污耐压的影响很大。GB/T16434--1996附录D和JB/T5895-1991第6条皆明确指出在利用爬电比距法来进行污秽绝缘设计时一定要考虑爬电距离有效系数。国内至今尚未系统研究爬电距离的有效性。以上这些原因无疑会导致污秽绝缘配置偏低或裕度偏小。

  3解决污闪问题的思路

  解决污闪问题主要是重新认识污秽绝缘设计。

  3.1按爬电比距确定绝缘子串片数所存在的问题.

  目前,各国均按污秽水平划分污级,并规定各污级对应的爬电比距,仅前苏联和我国按爬电比距的方法确定绝缘子串片数。前苏联与我国的设计又不同,不仅系统地考虑了爬电比距有效系数(一般取1.1-1.2),还规定了不同污秽等级下50%人工污秽耐受电压值,即220kV及以下电压等级为对应额定电压值,330kV和500kV分别规定为315kV和410kV,仅按GB/T16434-1996来进行外绝缘设计,与前苏联相比无疑偏低。

  3.2按污耐压确定绝缘子串片数所存在的问题

  美国、日本和我国武汉高压研究所等主要是以污耐压进行外绝缘设计,污耐压皆以长串真型试验来确定。不同国家污秽绝缘设计原则相同,仅是设计参数取值不同。

  由文献[1]知,绝缘子串片数N为污秽设计目标电压值UΦmax与单片绝缘子最大耐受电压Umax的比值,而单片绝缘子最大耐受电压Umax是σ、k的函数,σ、k越大,Umax越小,N越小,反之N越大。σ、k取定值后,按系统重要性考虑的修正系数k1,越大,N越大,即绝缘子串的污秽裕度越大。σ值一般由50%人工污秽耐受电压试验确定。由表1可知,不同国家污秽绝缘设计参数取值不同。σ值不同主要是由不同污秽试验室等价性造成,而k值主要由线路设计闪络概率户值确定。若单串闪络概率户取值偏高,无疑k偏低,Umax偏高;若k1取值偏低,则UΦmax偏低,若p和k1值同时偏低,则N偏低。而我国p、k1取值相对前苏联、美国和日本而言皆偏低,可见N值较小,绝缘子串的绝缘配置偏低,或者说裕度偏小。随着大环境的污染,若污秽等级从I级(0.025mg/平方厘米)发展到Ⅲ级(0.1mg/平方厘米),不同型式绝缘子的Umax值下降幅度可达32.2%-44.0%。XP-160型绝缘子长串真型试验结果表明,I级(0.03mg/平方厘米)Umax值(11.81kV)相对于Ⅲ级(0.1mg/平方厘米)Umax值(8.36kV)下降幅度为29.2%,无疑绝缘子串片数相应会增加31.1%-22.7%或34.2%,受杆塔高度限制,必然无法调爬,应在设计基建时将裕度留给运行部门。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top