微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 评判光伏逆变器拓扑结构及功率器件标准

评判光伏逆变器拓扑结构及功率器件标准

时间:11-16 来源:互联网 点击:

是flowSOL0-BI open E (P896-E02),如图 15 所示:


图 15: flowSOL0-BI-open E (P896-E02)

技术参数:

升压电路采用 MOSFET(600V/45 mΩ)和 SiC 二极管组成
旁路二极管主要是当输入超过额定负载时,旁路 Boost 电路,从而改善逆变器整体效率
H 桥的上桥臂采用 IGBT(600V/75A)和 SiC 二极管,下桥臂采用MOSFET(600V/45 mΩ)
模块内部集成温度检测电阻

下面再来分析一下图 14 所示的发射极开路型拓扑。当下桥臂的 MOSFET工作时,与上桥臂 IGBT 反并联的二极管却由于滤波电感的作用没有工作,这样就可以在上桥臂也使用 MOSFET,在轻载时提高逆变器的效率。仿真结果显示,在 2kW 额定功率输出时,这种光伏逆变器的欧效可以提高 0.2%,从而使效率达到 99.4%。在实际的应用场合中,这种拓扑对效率的提高会更多,因为仿真结果是在假定芯片结温 125℃的情况下得到的,但由于 MOSFET 体积较大,且光伏逆变器经常工作在轻载情况下,MOSFET 芯片结温远远低于 125℃,因此实际工作时 MOSFET 的导通阻抗 RDS-on 将比仿真时的数值要低,损耗相应也会更小。如何解决无功功率的问题呢?这种电路拓扑处理无功功率的唯一方法就是使用 FRED-FET,但这些器件的导通阻抗 RDS-on 通常都很高。另一个缺点是其反向恢复特性较差,影响无功补偿和双向变换时的性能。但是在某些特殊应用中,如果必须通过无功功率来测量线路阻抗或者保护某些元器件,那么图 16 所示拓扑将可以满足以上要求。


图 16: 适应无功负载的全 MOSFET 拓扑

图 16 所示拓扑结构允许纯无功负载,能够提高对电网的无功补偿,也能满足双向功率流动,例如实现高效电池充电。如果应用 SiC 肖特基二极管,这种电路拓扑将可以达到更高的效率等级。


图 17: 2kW 额定功率下不同拓扑结构的欧洲效率

三相光伏逆变器拓扑结构

对于 NPC 拓扑的三相光伏逆变器也可以做类似的改进。


图 18: 三电平逆变器

以一相为例,在 2kW 额定输出时,三电平逆变器(图 18)可以达到 99.2%的欧效。稍作改动,该拓扑就可以实现无功功率流动。


图 19: 可实现无功功率输出的 NPC 拓扑逆变器

在输出与直流母线间增加 1200V 二极管后,该拓扑就可以输出无功功率。同时也可以用作高效率的双向逆变器,实现能量的反向变换。为了减小损耗,D3,D4 推荐使用 SiC 二极管。但由于 1200V 的 SiC 价格过高,下面这种拓扑将会是一种比较好的选择。


图 20: 可实现无功功率输出的 NPC 拓扑逆变器(增加了 2 个 SiC 二极管和 4 个 Si 二极管)

这种拓扑只使用了两个 600V 的 SiC 二极管(D4,D6)。D3 和 D5 采用快速 Si二极管,D7 和 D8 采用小型 Si 二极管,用来防止 SiC 二极管过压损坏。这里是否可能也全部采用 MOSFET 来实现呢?答案是可以的,前提是需要把 MOSFET 的体二极管旁路掉。这可以通过把上下半桥的输出端子分开并配上各自的滤波电感来实现。


图 21: 采用 MOSFET 实现无功功率输出的 NPC 拓扑逆变器

图 21 的电路拓扑可以提高在轻载时的效率。


图 22: 全采用 MOSFET 方案和混合型方案在额定功率 2kW 时的效率比较

其欧效可以从 99.2%提高到 99.4%。无功功率由 1200V 快速二极管通路实现。在选择二极管时,推荐使用 SiC 二极管,这样可以在反向变换时,达到更高的效率。或者如图 23 所示,D4 和 D6 采用 600V SiC 二极管,另外四个采用快恢复 Si 二极管。


图 23: 采用 2 个 SiC 二极管、4 个 Si 二极管和分别输出方式的 NPC 逆变器拓扑

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top