能够实现电能的回收和利用的CoolHD技术
路负责在发送器中回收和重新利用电能。启动电路使用非常小的电流来产生偏压(见图3中的G1与G2)。低压降电压调节器负责提供不同电压至源端或终端IC设备。因此只要线缆连接着接收器,这种电能的回收和重新利用就会继续。
这一技术的创新之处在于源端无需上游供电来工作,源端设备与终端相连接就可以为自己供电。只要源端从上游得到内容就会传输给其下游的终端,这样源端与终端之间的数据传输就总在继续。当终端断电时,也就是终端不需要从上游得到有效载荷,源端将还原到初始状态。
CoolHD技术能为便携设备带来什么?
将CoolHD的技术优势正确完全的描述很重要。在硅谷数模的实验室中,工程师们测量了一款市场中热卖的一流高清便携设备的功耗。这一款便携设备中集成了应用处理器,能够处理并输出从VGA到Full-HD(1,080p)的分辨率。我们在测试中将一个同样的应用处理器中集成了普通HDMI发送器,并在另外一个相同的应用处理器中集成了硅谷数模的CoolHD HDMI发送器。工程师们同时测试着两个实验设备来充分理解CoolHD技术的优势。
一个屏幕的显示功能被定义为一定的竖直列和水平行数量在一定的刷新率刷新。例如,发送器在60Hz发送VGA分辨率。VGA要求有640个直行和480个水平行。为达到60Hz的刷新率,每画面每秒要刷新60次。640个竖直列和480个水平行纵横在一起就成为640 x 480的矩阵,矩阵上每个组成元素就是一个屏幕上的像素。每个像素最基本的色深是红、绿和蓝色。每个像素的基本色彩被一系列的数字比特驱动,呈现为屏幕上所显现的像素颜色。像素时钟负责控制晶体管电路组的开和关,从而控制像素在屏幕上的显示。因此更高的分辨率意味着更高的像素。也就是说为达到更高的分辨率有更多的像素要被像素时钟控制。
图4 – 手持设备应用处理器中普通HDMI和CoolHD? HDMI源端功耗对比
图4中显示了不同分辨率的像素时钟频率,从VGA到Full-HD。工程师们测试了应用处理器本身的功耗,应用处理器集成普通HDMI发送器后的功耗,和应用处理器集成CoolHD HDMI发送器后的功耗。应用处理器自身功耗是在输出最低分辨率(如VGA)时记录的,在测试中成为基础数据。其他功耗数据除以基础数据得到了最终图中使用的“功耗指数”。
从图4中可见功耗与视频像素时钟频率有直接关系。当显示的分辨率增加,像素也自然需要增加来支持,同样,在不断显示画面时,像素时钟频率必须增加来处理一个时间段中更高的像素。这样提高分辨率自然就增加了应用处理器的功耗。高清多媒体内容需要通过HDMI连接来传输,而普通HDMI发送器会增加应用处理器的功耗。一般情况下,HDMI像素时钟频率是原始视频像素时钟频率的10倍。我们的测试显示应用处理器集成了HDMI后的功耗,是应用处理器单独工作功耗的1.45倍。但集成了硅谷数模CoolHD HDMI发送器的应用处理器的功耗与应用处理器单独工作功耗一致,并未添加更多的功耗。因此清楚可见CoolHD HDMI发送器在输出高清数据时没有使用外接电源。
CoolHD 技术 利用 回收 实现 电能 能够 相关文章:
- 能够进行电能回收再利用的CoolHD技术(08-03)
- 无线充电物理技术分析(12-09)
- 飞轮储能技术在UPS系统中的应用(12-09)
- 基于DDS技术的实用信号源的设计(二)(12-09)
- 基于DDS技术的实用信号源的设计(一)(12-09)
- 电源技术基础:有效减少开关损耗的“软开关”技术(12-09)