MOSFET雪崩能量与器件热性能和工作状态相关性能
时间:12-23
来源:互联网
点击:
事实上,器件在UIS工作条件下的雪崩损坏有两种模式:热损坏和寄生三极管导通损坏。热损坏就是功率MOSFET在功率脉冲的作用下,由于功耗增加导致结温升高,结温升高到硅片特性允许的临界值,失效将发生。 寄生三极管导通损坏:在MOSFET内部,有一个寄生的三极管(见图4),通常三级管的击穿电压通常低于MOSFET的电压。当DS的反向电流开始流过P区后,Rp和Rc产生压降,Rp和Rc的压降等于三极管BJT的VBEon。由于局部单元的不一致,那些弱的单元,由于基级电流IB增加和三级管的放大作用促使局部的三极管BJT导通,从而导致失控发生。此时,栅极的电压不再能够关断 MOSFET。 在图4中,Rp为源极下体内收缩区的电阻,Rc为接触电阻,Rp和Rc随温度增加而增加,射极和基极的开启电压VBE随温度的增加而降低。因此,UIS的能力随度的增加而降低。 在什么的应用条件下要考虑雪崩能量
图3 UIS损坏波形
图4 寄生三极管导通
图5 UIS损坏模式(VDD=150V,L=1mH,起始温度25℃)
从上面的分析就可以知道,对于那些在MOSFET的D和S极产生较大电压的尖峰应用,就要考虑器件的雪崩能量,电压的尖峰所集中的能量主要由电感和电流所决定,因此对于反激的应用,MOSFET关断时会产生较大的电压尖峰。通常的情况下,功率器件都会降额,从而留有足够的电压余量。但是,一些电源在输出短路时,初级中会产生较大的电流,加上初级电感,器件就会有雪崩损坏的可能,因此在这样的应用条件下,就要考虑器件的雪崩能量。
另外,由于一些电机的负载是感性负载,而启动和堵转过程中会产生极大的冲击电流,因此也要考虑器件的雪崩能量。
- 电源系统管理中数字可编程 DC/DC 转换器的精确度探讨(12-12)
- 详述电源系统中数字控制器的应用设计(12-08)
- 变电站交直流一体化电源系统设计(12-08)
- 解析电源系统中数字控制器的应用设计(12-08)
- 基于开关电源系统的电磁兼容问题的探讨(12-08)
- UPS电源系统维护的七大秘诀(12-08)