基于56F803型DSP的大功率超声波电源的设计
电路的输出电压,当移相角增大时输出电压也增大,所以高频逆变电路最终会输出换能器所要求的功率。
3.3 周期分段实现移相控制
本系统的开关采用占空比为50%的PWM信号移相控制。传统移相控制方法有二种:一种是采用UC3875产生移相控制波形.但电路复杂,不便于调试。精度低:另一种是采用单片机,这种方法大部分采用正弦表产生移相波形,程序冗长、复杂、可读性差。本系统采用周期分段控制方法实现移相控制波形。在每个PWM周期中把开关管的控制波形分为4段.每段波形中DSP模值寄存器PWMCM的值等于计数器PWMVAL的值。变量Count代表输出的是第几段波形,当Count=l或Count=3时.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)赋给模值寄存器。当Count=l时,PWM模块的0通道和3通道分别输出高电平和低电平。当Count=3时.PWM模块的0通道和2通道分别输出低电平和高电平;当Count=2或Count=4时.把波形Ⅱ或IV的模值MODULO2(Ⅱ和IV的模值相同)赋给模值寄存器.当Count=2时,PWM模块的O通道和3通道都输出高电平。当Count=4时.PWM模块的0通道和2通道都输出低电平。然后,按照上述方式循环输出波形,如图4所示程序框图。
图5为主程序框图。在程序中,频率跟踪部分出现相位差时,先给频率赋一个较大步长(m=100).然后随着相位差的减小.逐渐减小步长.直到相位差为零。
4 实验结果分析
上述超声波电源的主要参数是直流侧电压270 V;开关频率fS=20 kHz;高频变压器匝比K=38:15;谐振电感Lf=3 mH;换能器采用工作频率为20 kHz.内阻为10Ω ,电容为12 000pF,最大输出功率为l 500 W。
图6(a)给出逆变桥输出电压和电流实验波形。
图6(b)是Q1管控制波形和漏一源极间电压实验波形。可见,当控制信号使开关管导通时。其漏极和源极之间的电压已经为零,实现了开关管零电压导通。
图6(c)是换能器二端电压实验波形。换能器处于固有频率谐振状态时为纯阻性负载,所以二端电压为正弦。
5 结束语
采用频率跟踪和功率协调控制的数控式新型超声波电源具有以下特点:
(1)采用带辅助电路、电流增强型的ZVS全桥变换器.实现了所有开关管的ZVS;(2)实现了频率跟踪与功率控制的协调控制策略,跟踪精度可达4Hz.能够满足超声焊接、超声清洗等控制的要求;(3)采用周期分段控制策略实现ZVS的移相控制,使得程序简化;(4)采用IR2110型集成驱动,驱动简单.减小了系统的体积,降低了成本。
电源 设计 超声波 大功率 56F803 DSP 基于 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 电源SOC:或许好用的“疯狂”创意(07-24)