微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电信系统的热插拔设计:避免拼凑、支持高效设计

电信系统的热插拔设计:避免拼凑、支持高效设计

时间:02-15 来源:互联网 点击:

本应用笔记讨论了热插拔电路在常备系统中的重要作用和电路优化,本文以电信系统作为需要插入背板的微处理器板卡的例子。“始终保持有效运转”的系统定义为不会因为维护或整修而断电的系统,本文涉及的“5个9”高度可靠系统几乎意味着零关断。如此可靠运行的设备必须依靠热插拔电路,在不关闭整体系统电源的前提下插入或拔出维护板卡。本文详细介绍了热插拔电路,对一些拼凑而成的热插拔方案加以分析,说明了这些方法中存在的缺陷。本文还阐述了新一代高集成度控制器,这些热插拔控制器从根本上克服了早期设计的问题。

类似文章于2010年7月19日发表在Planet Analog网站。

引言

与其它复杂的多卡系统类似,电信系统是由插入背板的微处理器板卡系统的集合。这类“始终保持有效运转”的系统通常包括:专用交换机(PBX)、蜂窝基站(BTS)、刀片式中心(BCT)服务器、网络数据通信和存储系统。系统一旦上电运行,将不允许断电中止服务或进行维护。

通常用“5个9”描述这些系统,即99.999%地保持有效运转,这意味着几乎为零的关断时间。对于工作在这一级别的系统,必须允许在保持整个系统工作的状态下插入或拔出板卡,以便对系统进行维护、升级和配置,有时甚至是在不影响系统工作的状态下进行系统扩展。

本文讨论了板级工程师目前在设计热插拔电路时所采取的一些拼凑式方案,并在随后探讨了几种新一代热插拔控制的创新方案。“热插拔”定义中重点强调了电压瞬变,文中介绍了拼凑式热插拔控制方案的一些负面影响。文章最后介绍了近期推出的热插拔控制创新技术。

热插拔事件:理解瞬变



图1. 多PCB基板系统

热插拔事件:板卡插入、拔出时产生的浪涌电流尖峰

热插拔表示在全速运转、没有断电的系统中插入或拔出板卡、电缆或其它装置。利用合理的设计,带电插入板卡时不会在电源或系统的输入、输出信号上产生任何干扰。

当一个背板插入所有板卡并保持全速运转时(图1),背板上的板卡均处于带电状态。这意味着每块板卡的电源输入端都有一个大电容,而且这个旁路电容处于完全充电状态。电源输入端的大电容为电源设计提供了个重要作用:为板卡的下游电路提供稳定的供电电压,消除旁路电容上的扰动以满足负载的瞬态供电需求。

如果将机架上尚未充电的一块板卡插入带电背板时,将会发生几种情况。参考图2,在新插入并开始上电的PCB上,用于旁路和滤波存储的大电容将呈现瞬间短路并开始充电。充电电荷来自于带电系统,电容C1、C2和C3 (这些其它板卡上已经充电的电容将开始放电)。这种不受控制的电容充电(或放电)将对新插入板卡上的电容注入较大的浪涌电流。浪涌电流的幅度可能在极短的时间内达到数百安培,取决于实际系统。

随着电容快速充电,它们将表现为短路状态,瞬间吸收较大的电流。图3给出了注入电解电容的浪涌电流的波形图,以及电容充电时两端的电压。从曲线图可以看出,电流峰值达到了9.44A,从系统吸取较大功率,这将导致背板系统的电容放电。从而使电源电压跌落,可能造成相邻板卡复位,引入数据传输故障或严重干扰其它系统的运行。

瞬间浪涌电流的幅度是负载(早供电)电容的函数,负载电容越大(并且,ESL和ESR越低),峰值浪涌电流越大。


图2. 电路板插入顺序和上电时的浪涌电流


图3. 注入电解电容的浪涌电流和电容充电时两端的电压

电压瞬变的影响可能导致系统失效

任何系统中,这些背板的电源通常提供电流限制。热插拔过程中所产生的电压瞬变可能对已插入背板的板卡造成严重威胁。浪涌现象会导致背板电源的跌落,而背板电源总线的电压跌落和/或电源上的脉冲干扰可能造成系统意外复位。不受限制的浪涌电流还会导致元器件损坏:板卡旁路电容被烧毁、印刷电路板(PCB)引线被烧断、背板连接器引脚和/或保险丝被烧断(这可能是受到破坏的主要部件)。

背板电源总线的跌落会在要插入系统的板卡电源上产生扰动或脉冲干扰,也会导致相邻板卡产生复位或影响背板与卡之间的通信(造成通信错误)。背板通常采用差分总线(LVDS/LVPECL/光纤通道/其它),必须满足信号规格以确保通信正常。热插拔期间由于VCC电源电压和地电平的变化,会在信号总线上引入共模噪声。考虑到这一潜在问题,热插拔控制电路必须采取保护措施,避免在背板上产生强噪声而导致总线的数据通信错误。

另外一个容易忽略的问题是系统的长期可靠性,设计不当的热插拔保护电路会使电路板上的元器件在长期受到热插拔事件的冲击下而损坏。本质上讲,每次热插拔操作都类似于从硅片上“抽取”绑定线,这种周而复始的操作最终会引起毁灭性的破坏。解决这一问题的有效途径是对热插拔板卡的浪涌电流峰值加以控制。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top