脉冲变压器的磁学(下)
配,则:(22)
5.3共模扼流圈
共模扼流圈工作和变压器相似,它也是用绕在同一磁心上的不同线圈来产生磁的耦合。它和变压器不同之处在于它不是用作信号的变换和隔离,说得确切一些,即它对加于其上的共模信号呈现高阻抗,允许差模信号不受阻碍地通过。
当共模电压加于输入端的扼流圈如图18所示,图中的基准电平是任意的。加在每一条线上的电流和电压是相等的(电流的返回通道没有画出,但实际上,它通常是通过寄生电容返回到基准电平上)。
绕在同一磁心上两个绕组的匝比是1:1,在理想情况下,所有磁通都是相互耦合的(和理想变压器一样)。在同一方向流动的两个共模电流,产生相位相同的磁通。它们产生的影响就相当于串联的感抗,它的大小取决于信号频率和线圈的参数(如磁心截面和磁导率等)。
当差模电压加于输入端的扼流圈如图19所示,总的合成电流流过负载通过扼流圈返回。在扼流圈中流过相反方向的电流磁通相互抵消。扼流圈对差模信号实际上是“觉察不出的”。
上面叙述的完美扼流圈具有无限宽的频率响应,对共模信号呈现无限大的阻抗,对差模信号阻抗为零。实际的扼流圈和变压器一样除有绕组电阻外还有漏电感、分布电容和磁心损耗。它产生的效应,除了对差模信号有不等于零的阻抗外,它的频率响应也是有限的、共模阻抗也是有限的。
一般来说,共模扼流圈的工作频率与它的共模电感成反比。
6变压器的测试
测量图16所示变压器等效电路参数,通常是为了验证要求的计算值。两种简单的测试能确定导出的参数。
6.1开路测试
这种测试通常是在低频下进行的,所以变压器的电容项可以忽略。这种测试电路如图20所示。
变压器额定电压常加在原边线圈端子上。副边线圈开路,所以副边没有电流流动、副边没有漏电
图19具有差模输入的扼流圈
图20开路测试
图21短路测试
图22具有电源和负载的等效电路
图23低频等效电路
图24低频响应
图25高频等效电路
感、副边绕组可以忽略。通常,原边漏感和电阻比励磁电感和磁心损耗等效电阻小得多,也可以忽略。简化等效电路如图20右边所示。测量所加电压和由它引起电流的幅值和相位就能得出励磁电抗和磁心损耗等效电阻。现代阻抗电桥能完成必需的计算并以数字方式直接给出电感和电阻的测量值。
因为在测试中励磁电感是在副边绕组开路情况下测得的,所以一般称之为开路电感(LO或OCL),在本文中将始终使用这一专门术语。
6.2短路测试
再一次忽略绕组内部的电容,得到的测试电路如图21所示。
副边线圈是短路的,使额定电流流过原边绕组的端点上。由于短路电压U1很小,开路电感和磁心损耗等效电阻要比副边开路时小得多,所以能被忽略。短路测试最终等效电路如图21右边所示。折合到原边的将是漏电感和绕组电阻的测量值(见2.13节)。测量原边的电压和电流的幅值与相位就能得出电感和电阻值(LL=LLP+LLS/n2,RL=RP+RS/n2)。
绕组电阻的测量也可以直接用直流电压加在原边或副边绕组进行测量。测得的电阻就是每个绕组的直流电阻(DCR)。
7频率响应特性
下面用第3节变压器的等效电路和有关的简化假设去描述一般宽带信号变压器的频率响应曲线。在感兴趣的频率范围内,绕组之间的电容假设可以忽略。
我们可画出变压器接有电源和负载(假设两者都是纯电阻性的)的等效电路,并对它作进一步简化得出的等效电路如图22所示,图中负载电阻,副边的漏感和副边绕阻电阻全部换算成理想变压器原边的元件。
7.1低频响应
在低频时,对图22等效电路作出进一步简化是可能的:
(1)CD的阻抗值足够大,可以忽略;
(2)RSOURCE和RP可合并为一原边电阻R1。
RPRSOURCE;
(3)RLOAD,RC和RS可合并为一电阻R2。
RSRLOAD,RCRLOAD;
(4)漏感电抗足够小,可以忽略。
在上述假设下,画出的低频等效电路如图23所示。U2和负载两端的电压非常接近。L0的阻抗(开路电感)和频率f成正比。当频率f减小时,R2和L0并联的阻抗也减小。当f0时U20,如图24所示。
低频响应主要是开路电感作用。当开路电感增加,低频响应就能得到改善。
7.2高频响应
在高频时可按下面的假设对图22作进一步的简化:
(1)开路电感L0的阻抗足够大,可以忽略;
(2)RSOURCE和RP可合并为一原边电阻R1。
RPRSOURCE;
(3)RLOAD,RC和RS可合并为一电阻R2。
RSRLOAD,RCRLOAD
(4)漏电感可以集中在一起。
在上述假设下,我们能画出其高频等效电路如图
图28等效电路的时域响应
图29上升沿等效电路
图30上升沿的波形
25所示。U2和负载两端的电压非常地接近。LL的阻抗和频率f成正比。CD的阻抗和频率f成反比。两者引起的效应是:当f∞则U20,如图
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)