微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 开关电源原理与设计(连载27)双激式变压器开关电源(part2)

开关电源原理与设计(连载27)双激式变压器开关电源(part2)

时间:02-28 来源:互联网 点击:

电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。

图1-28是图1-27推挽式变压器开关电源,在负载为纯电阻,且两个控制开关K1和K2的占空比D均等于0.5时,变压器初、次级线圈各绕组的电压、电流波形。


图1-28

图1-28-a)和图1-28-b)分别表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压波形,和流过变压器初级线圈N1绕组两端的电流波形;图1-28-c)和图1-28-d)分别表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压波形,和流过开关变压器初级线圈N2绕组两端的电流波形;图1-28-e)和图1-28-f)分别表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形,和流过开关变压器次级线圈N3绕组两端的电流波形。

从图1-28-b)和图1-28-d)中我们可以看出,当控制开关K1或K2接通瞬间,流过变压器初级线圈N1绕组或N2绕组的电流,其初始值并不等于0,而是产生一个电流突跳,这是因为变压器次级线圈N3绕组中有电流流过的原因。

当变压器次级线圈N3绕组有负载电流流过时,其产生的磁通方向正好与流过变压器次级线圈N1或N2绕组励磁电流产生的磁通方向相反,因此,流过变压器初级线圈N1绕组或N2绕组的电流也要在原来励磁电流的基础上再增加一个电流,来抵消流过变压器次级线圈N3绕组电流的影响。增加电流的大小等于流过变压器次级线圈N3绕组电流的n倍,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

从图1-28-f)中我们可以看出,流过开关变压器次级线圈N3绕组两端的电流波形是个矩形波,而不是三角波。这是因为推挽式变压器开关电源同时存在正、反激电压输出的缘故。当变压器同时存在正、反激电压输出时,反激式输出的电流是由最大值开始,然后逐渐减小到最小值,如图中虚线箭头所示;而正激式输出的电流则是由最小值开始,然后逐渐增加到最大值,如图中实线箭头所示;因此,两者同时作用的结果,正好输出一个矩形波。

从图1-28-e)还可以看出,输出电压uo由两个部分组成,一部分为输入电压Ui通过变压器初级线圈N1绕组或N2感应到次级线圈N3绕组的正激式输出电压(uo),这个电压的幅度比较稳定,一般不会随着时间变化而变化;另一部分为励磁电流通过变压器初级线圈N1绕组或N2绕组存储的磁能量产生的反激式输出电压[uo],这个电压会使波形产生反冲,其幅度是时间的指数函数,它会随着时间增大而变变小。

这里还需指出,图1-28-e)中的波形有上冲,在纯电阻负载中是正常的,尽管N1和N2互相都可以把对方看成是变压器次级绕组,并对高于输入电压Ui的反电动势电压进行限幅,但因为线圈N1绕组与线圈N2绕组之间有漏感,线圈N2绕组与线圈N3绕组之间也有漏感,况且,控制开关在刚接通瞬间有比较大的电阻,因此,变压器次级线圈N3绕组瞬间反激输出电压高于正激输出电压是肯定的。不过在大多数情况下,最好还是采用半波平均值的概念来进行电路分析或计算,以免需要进行复杂的指数函数运算。

当要求推挽式变压器开关电源输出电压波形的反冲幅度很小时,可采用如图1-29所示的电路。图1-29与图1-27相比,多了两个阻尼二极管D1、D2,它们分别与控制开关K1、K2并联。当控制开关K1由接通转换到关断时,在N2线圈中产生的感应电动势e2,不管K2处于什么工作状态,接通或关断,只要N2线圈中产生的感应电动势e2的幅度超过工作电压Ui,二极管D2就会导通,相当于感应电动势e2通过二极管D2被工作电压Ui限幅,同时也相当于变压器次级线圈N3绕组输出电压uo也要通过电磁感应被Ui进行限幅,而二极管D2对控制开关K2的工作几乎不受影响。

同理,当控制开关K2由接通转换到关断时,不管K1处于什么工作状态,只要N1线圈中产生的感应电动势e1的幅度超过工作电压Ui,二极管D1就会导通,感应电动势e1就会通过二极管D1被工作电压Ui限幅,这也相当于变压器次级线圈N3绕组输出电压uo也要通过变压比被Ui进行限幅,而二极管D1对控制开关K1的工作几乎不受影响。

一般人们都把D1、D2称为阻尼二极管,这是因为D1、D2没有直接对输出电压uo进行限幅,而是通过变压器初、次级之间的感应作用间接进行的。实际应用中,一般都在开关三极管的E-C或场效应管的S-D两个电极内部封装有一个阻尼二极管,其作用就是用来对输出电压反冲进行阻尼用的。阻尼二极管D1、D2的另一个作用是防止变压器初级线圈N1绕组中产生的感应电动势e1对控制开关K1、K2反向击穿。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top