开关电源原理与设计(连载58)
在实际电路中,磁场强度是由励磁电流通过变压器初级线圈产生的,所谓的励磁电流,就是让变压器铁芯进行充磁和消磁的电流。由(2-24)式很容易看出,虚线a-b-c-d-e-f-a圈起来的面积所对应的就是磁滞损耗的能量;即:磁滞损耗能量的大小与磁滞回线的面积成正比。
由于输入交流脉冲在一个周期内,变压器铁芯中的磁通密度正好沿着磁滞回线跑了一圈,因此,我们可以在一个周期的时间范围内对(2-24)进行积分,即可求得变压器铁芯在一个周期内的磁滞损耗为:
A = k×E×Iμ×T= k E× Iμ/f (2-25)
(2-25)式中,A为一个周期内变压器铁芯的磁滞损耗,单位是焦耳;E为单位长度导线所产生的感应电动势,单位为伏; Iμ为励磁电流的平均值,单位为安培;T为输入交流电压的周期,单位为秒,f为脉冲频率,或开关电源的工作频率,单位为赫兹;k为比例系数,它是一个与选用单位制和变压器铁芯面积、体积以及初级线圈匝数等参数相关的常量。在(2-21)、(2-22)、(2-23)、(2-24)式中,没有比例系数k,是为了使问题简单,便于分析。
这里顺便指出,(2-25)式中,我们直接把A用来表示磁滞损耗能量,是因为磁滞损耗能量的大小与磁滞回线的面积成正比,但不是表示磁滞损耗的能量就等于面积A,两者是有本质区别的。因此,比例系数k在这里非常重要,通过它,可以把互相对应的关系用等号连接起来。
把(2-25)式两边乘以频率f,即可得到磁滞损耗的功率表达式:
Pμ=fA=kEIμ (2-26)
(2-26)式中, Pμ为磁滞损耗功率;f为输入交流电压的频率;k为比例系数,k与变压器铁芯的面积、体积以及初级线圈匝数相关;E为单位长度导线所产生的感应电动势; Iμ为励磁电流的平均值。
由(2-21)、(2-22)、(2-23)、(2-24)、(2-25)式我们又可以看出:磁滞损耗的大小与磁通密度增量的平方成正比,与导磁率成反比。由于磁滞损耗的大小与磁通密度增量的平方成正比,这也意味着磁滞损耗的大小与输入电压的平方成正比;因为,输入电压正比于磁通密度变化速率ΔB/Δt。另外从(2-26)式还可以看出,磁滞损耗与频率成正比。
从(2-23)、(2-24)、(2-25)、(2-26)式可以看出,开关变压器的磁滞损耗主要是由励磁电流产生的,但并不是所有流过变压器初级线圈的电流都是属于励磁电流,或所有的励磁电流都会转化为磁滞损耗;这一点后面还会进一步说明。
由(2-21)、(2-22)、(2-23)、(2-24)、(2-25)、(2-26)式可知,如要计算变压器铁芯的磁滞损耗,只需要计算变压器铁芯磁滞回线面积的大小,然后通过它们的对应关系,就可以求出变压器铁芯的磁滞损耗。由于各种变压器铁芯磁滞回线的形状各不相同,并且磁滞回线的面积与磁通密度增量以及导磁率和工作频率或脉冲宽度均相关,要精确计算各种变压器铁芯磁滞回线的面积是比较困难的;因此,在实际应用中我们可以采用比较简单的平均值估算方法。
为此,我们把图2-6改画成图2-13,以便用来估算变压器铁芯的磁滞回线面积。在图2-13中,如果我们把磁滞回线面积定义为面积S,把面积:Br×Hc×4定义为面积S0(图2-13中阴影部分),Bm×Hm×4定义为面积S1,那么就有:
S0 S S1 (2-27)
因此,在实际应用中,我们可以取S0和S1两者的中间值作为磁滞回线面积S的值,即:
S = ( S0+S1)/2 (2-28)
(2-28)式中,S为变压器铁芯的磁滞回线面积,同时,它也代表变压器铁芯在一周期内的磁滞损耗;S0为剩余磁通密度Br和-Br与磁矫顽力Hc和-Hc组成的面积;S1为最大磁通密度Bm和-Bm与最大磁场强度Hm和-Hm组成的面积。
通过(2-28)式求出磁滞回线面积后,再通过对应关系,即把S再乘以一个系数k,就可以求出磁滞损耗A或磁滞损耗功率Pμ 。即:
A=kS ; Pμ=kS/T (2-29)
上式中A为一个周期内变压器铁芯的磁滞损耗,S为变压器铁芯的磁滞回线面积,k为比例系数,T为输入交流电压的周期。
由图2-13我们可以看出,当Hm或Bm很小时,磁滞回线面积S的值将往面积S0方面靠拢;反之,当Hm或Bm增大时,磁滞回线面积S的值将往面积S1方面靠拢。通过磁滞回线测试(请看下一节《开关电源变压器铁芯磁滞回线测量》的内容),如果知道S是向S0或S1方面靠拢,则还可以采用(2-28)式的估值方法,对磁滞回线面积S再估算一次。
例如,已知磁滞回线面积S的值向面积S1方面靠拢,即最大磁通密度Bm以及磁通密度增量ΔB均取得比较大;那么我们可以用(2-28)式先对磁滞回线面积S的值估算一次,结果记为S3 ;显然,S3的值小于磁滞回线面积S1的值,即磁滞回线面积S的值必
开关电源 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 开关电源要降低纹波主要要在三个方面下功夫(06-24)
- 超宽输入范围工业控制电源的设计(10-15)