利用实测GTO阳极电流波形设计逆变器缓冲电路
摘要:缓冲电路参数值对GTO的关断性能及整个GTO逆变器的工作性能起着至关重要的作用。本文通过对GTO关断过程中阳极电流与阳极电压波形的分析,提出一种以“综合指标”作为目标函数的缓冲电路参数寻优方案,可根据对GTO装置性能的具体要求确定GTO缓冲电路元件的最佳参数。
关键词:GTO缓冲电路设计阳极电流
中图法分类号:TM464文献标识码:A文章编号:02192713(2000)0948403
1引言
缓冲电路参数值直接影响GTO的关断性能及整个GTO逆变器的工作性能。因此如何在设计GTO逆变器时合理设计缓冲电路参数,便成为重要的问题。
本文通过对GTO关断过程中阳极电流与阳极电压波形的分析,提出并论证了GTO阳极电流波形与缓冲电路参数无关、缓冲二极管的反向恢复过程与缓冲电路参数无关的论点。在此基础上,提出了一种简便、实用的缓冲电路参数优化设计方案。可根据对GTO装置性能的具体要求确定GTO缓冲电路元件最优参数。在对GTO关断过程中阳极电压及关断功耗波形进行仿真时,为提高仿真精度,采用了实测的阳极关断电流波形。并据此推导出关断功耗波形。仿真结果与实验波形比较,误差极小。本文提出了一种以“综合指标”作为目标函数的缓冲电路参数寻优方案。
2利用阳极电流波形对阳极电压波形仿真的前提条件
GTO缓冲电路可等效为图1所示电路。如要利用实测的阳极电流对阳极电压进行仿真,首先需要证明以下两个条件成立:
(1)GTO阳极电流波形与缓冲电路参数无关;
(2)缓冲二极管的反向恢复过程与缓冲电路参数无关。
2.1GTO阳极电流波形与缓冲电路参数无关
图2为GTO关断时的阳极电流波形。整个过程可分为3个阶段:即存储时间段、下降时间段及拖尾时间段。
在存储时间段及下降时间段中,存储时间ts及下降时间tf值仅取决于门极抽取能力及GTO内部结构,而与缓冲电路参数无关。此两段的阳极电流波形也与缓冲电路参数无关。
在拖尾时间段,拖尾电流基本
图1GTO缓冲电路示意图
图2GTO阳极关断电流波形示意图
上由下降时间段的阳极电流波形及结温决定,与缓冲电路参数无关。
图3中8条曲线是CS=2,3,4,5μF时的阳极电流及阳极电压波形。可见,在缓冲电路参数变化后,阳极电压波形变化较大,而4条阳极电流曲线基本上完全重合。由此实验可验证以上分析的正确性。
图中曲线(1),(2),(3),(4)为缓冲电路参数改变后的实测阳极电压波形;
曲线(5),(6),(7),(8)为缓冲电路参数改变后的实测阳极电流波形。
2.2缓冲二极管的反向恢复过程与缓冲电路参数无关
储存电荷Qr及恢复时间trr是缓冲二极管反向恢复过程中两个重要参数。在分析GTO关断过程时,可近似认为Qr,trr为常量。由图4可证明这一点。图4是改变缓冲电阻支路分布电感后测得的缓冲电阻支路电流及缓冲二极管支路电流。可见,在Lrs改变后,irs变化很大,而ids几乎不变。即可认为trr只与缓冲二极管本身的特性有关。
图中曲线(1),(2),(3)为Lrs改变前、后的实测缓冲电阻支路电流波形。
曲线(4),(5),(6)为Lrs改变前、后的实测缓冲二极管支路电流波形;
图3缓冲电路参数改变后的阳极电流、阳极电压波形
如图5所示的缓冲二极管反向恢复特性曲线,t>t5后的缓冲二极管上电流近似认为是1条二次曲线,可以较好地说明问题。曲线方程为:(1)
(2)
式中trr—缓冲二极管恢复时间;
t5—ids=Ism的时间;
Ido—t=t7时缓冲二极管的电流值。
图4缓冲二极管恢复反向阻断能力后的ids,irs波形
3阳极电压波形仿真
利用GTO阳极电压与阳极电流间的数学模型,使用MATLAB语言进行计算机仿真,可由实测的阳极电流波形及缓冲电路参数得到阳极电压的仿真波形。仿真波形与实测波形相比,误差极小。如图6所示,图中曲线为CS=2μF及5μF条件下实际测得的阳极电压波形及相应的仿真波形。可见,仿真精度可满足寻优要求。
4缓冲电路参数优化设计方案
4.1目标函数的确定
下面具体讨论可以判断缓冲电路参数设置是否合理的指标。
图5缓冲二极管的反向恢复特性
(1)GTO关断过程中存在几个极其重要的动态参数,包括尖峰电压Up,峰值功耗Pfm,阳极电压上升率dua/dt,阳极再加电压峰值UDM。这些动态参数过高会导致GTO的失效,即GTO对这些动态参数的承受能力是有限的。设这些动态参数的极限值分别为(Up)m,(Pfm)m,(UDM)m,(dua/dt)m,(Urm-E)m。则可知,实际中GTO关断过程中的动态参数值与其极限值的比值越小,说明GTO装置工作性能越好。由于实用时的动态参数值与缓冲电路参数密切相关,可以说,一旦GTO及门极驱动电路确定,则GTO关断时
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...