小功率永磁直流电机的电磁干扰抑制研究
时间:03-03
来源:互联网
点击:
及工艺稳定性是保证好的电机设计的根本。 以下举两例说明工艺对EMI的影响: 例1换向器的精车水平。 若生产厂家的换向器精车水平不足,造成成品电机转子换向器表面的圆度及跳动不良,则电机在高速运行中,碳刷与换向器表面不能保持良好的接触,时断时合,在断开的瞬间,电流被试图强制归零,这会造成很大的电抗电势,产生火花进而恶化EMI。 例2永磁体的充磁。 理想状态下,充磁后的两极应具有相同的磁场分布川,且以磁极中心线为界,两侧的磁场应具有单一的磁性。若充磁过程中,由于充磁工装的原因造成磁场分布混乱,如图5所示。 图5 带有反波的磁场分布 则会严重影响EMI,且不易被发现。以图5为例.两磁极在靠近中性线的位置处均有与该磁极极性相反的一段反波.仔细分析借偏的原理可知,该反波事实上相当于一个与正常换向极作用相反的附加磁极,当其被转子换向线圈切割时,产生的电动势与电抗电动势同向,也就是会恶化换向;当其分布角度超过借偏角度时,会完全抹杀借偏的作用。 抑制换向时产生的电抗电势对于小型直流电机EMI的抑制十分关键。在影响小型直流电机EMI的各项因素中,火花的控制历来是难度较大的工作。具体到工程实践,设计上必须完美平衡电机的换向和性能,工艺上必须保证应有的水平与稳定,才可以做出满足各个强制性认证的合格的工业产品。
电磁干扰 相关文章:
- 电源模块(DC/DC)设计中处理低电磁干扰的设计实例(01-24)
- 详解几种可有效开关电源的电磁干扰抑制方法(01-23)
- 工程师课堂:增加系统的抗电磁干扰能力采取的措施(01-12)
- 网络安全IDS:无线网络电磁干扰屏蔽技术及应用(01-12)
- 基于电磁干扰(EMI)滤波减少精密模拟应用中的误差分析(01-12)
- 电磁干扰讲座:传输技术多层通孔和分离平面的概念(01-12)
