微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 变流技术与半导体电力变流器

变流技术与半导体电力变流器

时间:03-03 来源:互联网 点击:

应用,是半导体电力变流器向高频化发展的阶段,也是变流装置的控制方式由移相控制(PhaseshiftControl)向时间比率控制(TimeRatioControl—TRC)发展的阶段。时下将采用上述二种控制方式的变流装置(电源)简单地称作相控电源和开关电源的说法是不确切的,这是因为在半导体电力变流器中,承担功率变换的电力电子器件就是作为无触点开关来应用的,无论是相控电源还是时间比率控制电源都是工作在开关状态,因此,称为移相控制电源和时间比率控制电源的比较确切。

TRC一般有三种,即脉冲宽度调制(PulseWidthModuration-PWM),脉冲频率调制(PulseFrequencyModulation-PFM),混合调制(PWM+PFM)。PWM方式因为调制频率固定,即调制周期T恒定(或基本不变),通过改变控制脉冲的占空比D进行变换电路的调节,从而使滤波电路的设计比较简单,所以常用的TRC是PWM方式。

第三阶段的发展是随着全控型器件的发展而逐渐展开的。

首先以GTO、GTR等双极型全控器件的应用为代表,使逆变、变频、斩波变换电路的结构大为简化,使变换的频率可以提高到20kHz左右,为电气设备的高频化、小型化、高效、节能、节材奠定了基础。但是由于GTO、GTR是电流型控制器件,控制电路功率大,且变换频率也不能很高。

随着变换频率的不断提高,PWM电路的缺点便逐渐暴露了出来。由于PWM电路属硬开关电路,一方面使电路中的变换器件工作时所承受的电压应力及电流应力大,同时变换过程中高的dv/dt、di/dt又会产生严重的电磁干扰,使电气电子设备电磁兼容的问题突出;另一方面器件开通与关断损耗的问题逐渐棘手,严重制约了变换频率的进一步提高。于是建立在谐振、准谐振原理之上的软开关电路,即所谓的零电压开关(ZVS)与零电流开关(ZCS)电路问世。它是利用谐振进行换相的一种新型变流电路,实现了器件在零电压下的导通和零电流下的关断,从而大大降低了器件的开关损耗,这样一来,TRC技术+软开关技术使得变换频率进一步得到提高。

之后以功率MOSFET、IGBT等电压型控制的、混合型全控器件的应用为代表,真正实现了高频化,使变换频率达到100kHz~500kHz甚至更高,为电气电子设备更加高频化、小型化、高效、节能、节材创造了条件。

从以上叙述可知,第三阶段主要是电力半导体器件向全控型、模块化、集成化、智能化发展,半导体变流技术向高频化发展的时期,其结果是实现了从传统的电力电子技术(晶闸管与移相控制)向现代电力电子技术(全控型器件与TRC+软开关技术)的跨越,具有划时代的意义。仅就高频化带来的技术进步与节能、节材的实效,对于降低单产能耗,提高综合经济效益的影响都是巨大的。

时值今日,晶闸管的应用领域,绝大部分已经或即将被功率集成器件所取代,只是在大功率、特大功率的电化、电冶电源以及与电力系统有关的高压直流输电(HVDC),静止式动态无功功率补偿装置(SVC),串联可控电容补偿装置(SCC)等应用领域,晶闸管暂时还不能被取代。

3半导体变流技术与电源技术的关系

将半导体变流技术与电源技术的关系说成是两个独立的学科之间的关系是不科学的。实际上电源技术应该属于电力电子技术的范畴,而且是其一小部分,这是因为:

(1)电源技术所用的半导体功率变换器件属于电

力半导体器件;

(2)电源技术所要解决的问题仍离不开功率变

换,其理论基础就是半导体变流技术;

(3)电源技术所涉及的交直流稳定电源、UPS等,

皆是半导体电力变流器的内容,至于AC/DC,DC/AC,AC/AC,DC/DC变换技术,也是半导体变流技术早已解决了的题目;

(4)电源技术所应用的化学电源—蓄电池,物理

电源—发电机、太阳能电池,则各自分属一个学科、一个行业,电源技术只是拿来使用它们而已;

(5)电磁兼容的问题,更是一个大题目,属于无线电技术的范畴,电源技术也是利用信息传递过程中的电磁兼容通用技术,主要是用来解决高频化给电源本身和其它电子设备带来的电磁干扰问题。

电源技术由于其特定的应用场合,其功率不是很大,属于中小功率,所以基于时间比率控制+软开关技术的高频变换技术,在电源技术的应用中具有广阔的发展前景,完全取代相控变换技术只是时间早晚的问题。

4静止式固态断路器

电力电子器件开通、关断的可控性,不能不使人们想到用它来作电路开关的可能性。特别是电力电子器件在关断时不会产生电弧这一特点,更是具有重要的使用价值,这对于解决象含有易燃、易爆气体和粉尘的环境的输配电问题意义重大。

目前,利用电力电子器件的低压小功率的固态(体)开关,已经得到了广泛应用

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top