微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 完美无谐波高压IGBT变频器

完美无谐波高压IGBT变频器

时间:03-03 来源:互联网 点击:

1前言

国外某公司利用一种新的高压变频技术,生产出功率为315kW~10000kW的完美无谐波高压变频器(PERFECTHARMONY),无需附加输出变压器实现了直接3kV或6kV高压输出;首家在高压变频器中采用了先进的IGBT开关器件;达到了完美的输入输出波形,无需附加任何滤波器就可以满足各国供电部门对谐波的严格要求;输入功率因数达到095以上;总体效率(包括输入隔离变压在内)高达97%。达到这样高指标的原因是因为采用了三项新的高压变频技术:一是在输出逆变器部分采用了具有独立电源单相桥式SPWM逆变器的直接串联叠加;二是在输入整流部分采用了多相多重叠加整流技术;三是在结构上采用了功率单元模块化技术。

2单相桥式SPWM逆变器的直接串联叠加

单相桥式SPWM逆变器的直接串联叠加法,是通过N个具有独立直流电源的单相桥式SPWM逆变器直接串联的方式级联而成的,这是专为高压大功率逆变器使用的一种串联叠加法。此法是用N个依次移开2π/N相位角的载波三角波,与同一个正弦调制波进行比较产生出N组控制信号,用这N组控制信号(N组信号依次相差2π/N相位角)去依次控制N个具有独立直流电源的单相桥式SPWM逆变器,使每一个单相桥式逆变器输出相同的基波电压,然后将N个单相桥式逆变器的输出电压串联起来,就可以得到多电平SPWM无谐波电压输出,这种串联不存在均压问题。

21两个单相桥式SPWM逆变器的串联叠加

现个具有独立直流电源单相桥式SPWM逆变器的直接串联叠加电路如图1所示。由于N=2,所以载波三角波的移相角α==π(=180°)。对于三相输出逆变器来说,其A相电路由两个单相桥式SPWM逆变器A1和A2串联组成。A1的载波三角波的移相角α=0;A2的载波三角波的移相角α=(=180°)。A1和A2的载波三角波用同一个A相的正弦波进行调制。这样就可以得到A1的输出电压up1、A2的输出电压up2。up1和up2具有相同的基波电压。A1和A2串联后的输出电压uA=up1+up2就是输出为正弦波的无谐波电压、其波形如图2所示。

图1两个单相桥式SPWM逆变器的串联叠加

图2A1及A2串联叠加后的波形

为了求出单相桥式SPWM逆变器A1、A2的输出电压up1、up2的SPWM波形,必须先求出SPWM波形中各脉冲前、后沿a、b点的座标,为此先列出载波三角波的方程式:

对于单相逆变器A1α=0

(1)

对于单相逆变器A2α=180°(2)

K=0,±1,±2…

调制波的方程式为:us(t)=Ussinωst(3)假定载波比,调制比。

对于单相逆变器A2的输出电压up2的波形,

在采样点a:Ussinωst=-

令ωst=Y;ωct=X,

则X=2πK+π-α-πMsinY

在采样点b:X=2πK+π-α+πMsinY

从图2中A2的up2波形可知:X=ωct在2πK+α到2π(K+1)+α区间内,在a、b点之间得到up2的正脉冲,故可以得到up2的SPWM波的时间函数式为:up2(X,Y)=(4)Y=X

函数up2(X,Y)可以用双重付里叶级数表示:up2(X,Y)=Aoo+(AoncosnY+BonsinnY)+(AmocosmX+BmosinmY)+{Amncos(mX+nY)+Bmnsin(mX+nY)}

式中:Amn+jBmn=up2(X,Y)

将式(4)代入上式得:Amn+jBmn==

由贝塞尔函数得:所以:Amn+jBmn=

·〔〕=j(5)

当n为零或偶数时,=0,Amn+jBmn=0,

当n为奇数时,=2所以:Amn+jBmn=jJn(mMπ)

·〔cosm(π-α)+jsinm(π-α)〕Amn=-Jn(mMπ)sinm(π-α);Bmn=Jn(mMπ)cosm(π-α)当m=0时=1Aon+Bon=up2(X,Y)

因为up2(X,Y)是奇函数,故得:

Aon=0Bon=up2(X,Y)=

当n=1时,Bo1=ME;当n≠1时,Bon=0

故得up2的SPWM波形的双重付里叶级数式为:up2(t)=MEsinωst+cosm(π-α)·sin〔(mF+n)ωst〕-sinm(π-α)

·cos〔(mF+n)ωst〕(6)

由于A1的载波三角波的α=0;由于A2的载波三角波的α=π,A1和A2用的又是同一个正弦调制波,所以由式(6)可得:up1(t)=MEsinωst+cosm(π-0)·sin〔(mF+n)ωst〕-sinm(π-0)

cos〔(mF+n)ωst〕(7)up2(t)=MEsinωst+cosm(π-π)·sin〔(mF+n)ωst〕-sinm(π-π)

·cos〔(mF+n)ωst〕(8)

由于up1(t)和up2(t)的基波电压相同;同时又有sinm(π-0)+sinm(π-π)=0。对于cosm(π-0)+coom(π-π):当m等于偶数时等于2;当m为奇数时等于零,所以式(7)和式(8)相加得到的uA的双重付里叶级数式为:uA=up1(t)+up2(t)=2MEsinωst+sin〔(mF+n)ωst〕(9)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top