如何为便携式系统选择电容和电感元件
算可知,I=600MA时,电感总体损耗的91%是直流损耗;I=50mA时,电感总体损耗的93%是交流损耗。 图4a (ESR) 和 4b (Q)给出了厂商A(低 ESR,高Q值)和厂商B(高ESR,低Q值)的电感,还显示了采用这些电感(图4c) 的2MHz转换器的效率曲线。从这些数据判断,即使厂商A有较高的DCR,它也能在轻负载下提供更高的效率。 根据应用的不同,可以选择屏蔽式或非屏蔽式电感器。一般而言,屏蔽式电感用于那些必须满足严格的EMI规范的便携式应用。 最后但绝非不重要的是,按照生产方式的不同,有两类电感器。第一类是传统的绕线线圈式(Wire Wound coil)电感,另一类是较新式的芯片电感。芯片电感凭其尺寸和高度方面的优势使用正日益广泛。PCB装配时的安装速度也是芯片(多层)电感生产商大肆宣传的优点之一。在选择开关解决方案时,系统设计人员必须考虑到芯片电感的某些关键规格。电感和直流电流的关系随温度的变化是线圈式电感和芯片电感有显著不同的一个主要参数。图5显示了绕线线圈电感和芯片电感的横截面示意图。 从图 6可看到,一般来说,线圈式电感的电感-直流电流及温度关系曲线在饱和电流之前很平坦。在饱和电流之后,则随电流变化出现急剧下降。典型地,ISAT在85 ?C 时比25 ?C时要低10%到20%。 25 ?C时,芯片电感有一个高于额定值的初始电感值。一旦电流增大,芯片电感就开始下降。因此,大多数情况下,额定ISAT的定义不适用于芯片电感。规定了温度上升的额定rms电流也决定了芯片电感的额定电流。电感值随温度下降,不随直流电流下降,是芯片电感的另一个特性。 关于实际的电感值,系统设计人员必须谨慎选择正确的电感,并按照规格说明书找到最小的电感值。电感选择不正确会影响到稳定性,引起次谐波振荡(sub-harmonic oscillations),和/或降低开关的额定输出电流。与陶瓷电容的情况相同,设计人员应当主要关注实际工作情况中的电感值,而非额定电感值。 如何为磁性降压转换器选择电感的额定电流呢?如果电感的额定IRMS大于所需输出电流,最容易的方法是选择额定值大于或等于开关的最大电流限值的ISAT。不过,正如我们在芯片电感中看到的,我们必须搜寻满足稳定性和输出电流要求的最小电感值。选择较高值的芯片电感(比如用3.3μH代替2.2μH) 来满足电感要求是不可行的,因为对相同外壳尺寸的电感器,电感值越高,其下降就越剧烈。 此外,芯片电感厂商间存在着各种差异。例如,厂商A可能采用低渗透性材料,使电感值逐步改变。但这种方案需要更多的介电层。因此,较之采用高渗透率材料、下降更剧烈的厂商B,A将有更高的DCR,B的DCR较低。 本文的目的是给出一些能够用于实际情况的相关信息,也向系统设计人员和元件采购工程师介绍了在元件选择过程中,应该向元件生产商索取的必要数据。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)