基于超级电容器储能的光伏控制器设计
号,控制充电回路及放电回路,达到防过充、防过放的目的。
从图5中可以看到,二极管D1起到防反充的作用,即只有当光伏电池电压高于超级电容器端电压时才能够导通,而当阴天或晚上时,光伏电池电压低于超级电容器电压时,防止超级电容器给光伏电池放电。
4.3 系统
软件的实现
该系统的软件采用C语言编写,通过JTAG口下载到单片机中。其中程序需要完成对系统时钟,I/O口,A/D转换,定时器T0,PCA及PWM的初始化,光伏电池电压,电流,及超级电容器端电压的采样程序,光伏电池功率的计算,比较,以及MPPT的控制程序。单片机不断地对采样电压、电流进行转换计算,调整PWM值,调节占空比,采用查询的方式查询系统的最大功率点,反复判断系统是否达到了最大功率点。图6为MPPT控制流程图。
5 实验结果及分析
实验器材:25 W光伏电池,13.5 V,480 F电容器组,初始电压为4.7 V。用本文所设计的控制器对超级电容器充电和直接用光伏电池对超级电容器直充相比较。
表1为光伏电池直接给超级电容器充电,每隔10 min测量一次光伏电池电压,可以看出光伏电池的输出电压不断地上升,且数值和超级电容器端电压相差不多,说明超级电容器端电压牵制了光伏电池的输出电压,导致光伏电池并不是以最大功率输出,造成严重的功率损失。
表2为使用本文设计的控制器给超级电容器充电,每隔10 min测量一次光伏电池电压,可以看出光伏电池端电压几乎保持不变,不随超级电容器端电压的上升而变化,说明MPPT控制起了作用,达到了预期效果。
该系统中,光伏电池和超级电容器之间用降压斩波器连接,超级电容器端电压与光伏电池输出电压的比值近似等于降压斩波器的占空比。
图7为超级电容器端电压为4.8 V和9.3 V时单片机发出的脉冲波形,结合表2中光伏电池端电压,可看出占空比大小基本符合要求。
6 结语
实验证明,采用单片机C8051F310构成的MPPT控制器能够实现光伏电池的最大功率跟踪控制,并具有体积小,价格低和接线简单等优点,因而具有实用价值。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)