车载逆变电源的设计案例
2要尽量靠近功率开关管,而MC1,RC1和RC2却不必太靠近MC2,这样既可以发挥该电路的作用,也不至于给电路板的排布带来很大困难。用双极型晶体管(如8050)同样可以实现上述电路的功能。双极型晶体管是电流型驱动,其基极必须要串联电阻。为了加速其关断,同时防止其本身受到干扰,基极同样需要并联下拉电阻,这样就使电路更加复杂。
同时,要维持双极型晶体管饱和导通,其基极就必须从电源抽取电流,在通常的应用场合这并无太大影响,但在自举驱动并且是SPWM的应用场合,这些抽流会大大加重自举电容的负担,容易使自举电容上的电压过低而影响电路的正常工作。因此选用MOSFET来构成上述门极关断箝位电路。可以看到在门极有一个电压尖刺,这个尖刺与门极脉冲的时间间隔刚好等于死区时间,由此可以证明它是在同一桥臂另一开关管开通时产生的。此时电压尖刺基本消除。通过实验验证,该电路确实可以抑制和消除干扰,有一定的使用价值,可以提高电路的可靠性
4、 保护电路设计及调试过程中的一些问题
保护电路分为欠压保护和过流保护。
欠压保护电路如图5所示,它监测蓄电池的电压状况,如果蓄电池电压低于预设的10.8V,保护电路开始工作,使控制器SG3524的脚10关断端输出高电平,停止驱动信号输出。
图5中运算放大器的正向输入端的电压由R1和R3分压得到,而反向输入端的电压由稳压管箝位在+7.5V,正常工作的时候,由三极管V导通,IR2110输出驱动信号,驱动晶闸管正常工作,实现逆变电源的设计。当蓄电池的电压下降超过预定值后,运算放大器开始工作,输出跳转为负,LED灯亮,同时三级管V截止,向SG3524的SD端输出高电平,封锁IR2110的输出驱动信号。此时没有逆变电压的输出。
过流保护电路如图6所示,它监测输出电流状况,预设为1.5A。方波逆变器的输出电流经过采样进入运算放大器的反向输入端,当输出电流大于1.5A后,运算放大器的输出端跳转为负,经过CD4011组成的RS触发器后,使三级管V1基级的信号为低电平,三级管截止,向IR2011的SD1端输出高电平,达到保护的目的。
调试过程遇到的一个较为重要的问题是关于IR2110的自举电容的选择。IR2110的上管驱动是采用外部自举电容上电,这就使得驱动电源的路数大大减少,但同时也对VB和VC之间的自举电容的选择也有一定的要求。经过试验后,最终采用1μF的电解电容,可以有效地满足自举电压的要求。
5、 试验结果及输出波形
DC/DC变换输出电压稳定在320V,
控制开关管的半桥驱动器IR2110开关频率为50Hz,实验的电路波形如图7~图14所示。
6、功率因素校正:
低功率因数电源存在问题:使电网波形畸变,线路损耗加大;降低供电系统的功率因数、增大系统供电容量;降低用电设备的使用寿命;干扰仪器仪表;使计算机无法正常工作等不连续工作模式的校正原理在低功率(P200W)的PFC中,多采用DCM工作模式。常用的控制方法有恒频控制技术和恒导通时间控制技术。
1.恒频控制技术 PFC电路的开关频率保持不变,而且PWM控制输出的控制脉冲的占空比在半个工频周期内保持不变。 VT导通时,电感电流的峰值
在一个开关周期Ts中,电感电流的平均值为
若在半个工频周期内Ton和Tdon均为恒定值,则输入电流的峰值与输入电压成正比,电流的平均值与电压相位相同。当Tdon 恒定时,则输入电压与输入电流的比值恒定,从而实现PF=1。
但在实际电路中Tdon在半个工频周期内并不恒定,导致了平均输入电流存在一定程度的畸变。提高输入电压和输出电压的峰值比值,可以减小电流的畸变程度。
四、附录
- 开关电源设计案例详解(12-07)
- 最经典的IGBT资料大全,技术详解,设计技巧,应用案例(06-04)
- 功率开关对电源效率的影响(飞兆案例)(09-04)
- 系统详解Silabs MCU低功耗优势及经典案例(06-19)
- PAC模块电源的工作原理及应用案例分析(02-14)
- 艾默生CT变频器冶金行业大规模应用案例集锦(12-27)