关于提升LED背光系统的中压升压转换器效率分析
况下,如果Vdss增加,MOSFET 的Rdson会增大。例如,飞兆100V MOS器件FDD86102的Rdson 为24 mΩ。但是对于具有相同封装和价格的 250V MOS器件FQD16N25C,Rdson为270 mΩ。MOSFET器件的传导损耗在24mΩ和270 mΩ条件下的差别很大,我们使用相同设计工具计算了24VAC输入、 180V/0.4A输出PFC转换器Rdson的传导损耗。其数值分别是0.9W和10.08W。显然,270 mΩ Rdson是不可接受的。在标准升压拓扑中,为了提供180V输出电压,需要使用250V MOSFET以获得足够的Vdss余量。在这种情况下,减小传导损耗的标准途径是选择一个Rdson较低的MOSFET器件。不过,在相同Vdss下,Rdson较低的MOSFET器件不仅昂贵,而且具有较大的Coss。较大的Coss意味着较大的关断损耗。这里,我们找到了另一种减小传导损耗的方法。就是使用100V MOSFET器件如FDD86102,将24V电压提升到180V,当然,必须采用特殊的方法解决电压问题,如自耦变压器。
图4
图4所示为使用自耦变压器替代电感器的升压转换器,在导通期间,电流流经红色的路径就象标准升压转换器的一样,而在关断期间,电流则经过绿色路径。MOSFET漏极上的电压为:
如果我们输入 N1=3T, N2=7T, Vdiode=1V, Vout=180V, Vin=24V, 则Vd为:
因而可以使用100V MOSFET器件。
设计示例和测试结果
图5:所示为飞兆半导体用于LED背光照明电源的评估电路板的示意图。
U4, Q35, T3, D36和外部元件构成了这个升压转换器,绕组6-10用于实现零电流检测(ZCD),D37, C42, R39, R40具有两项功能,一项功能是作为箝位线路,吸收N1和N2之间的泄漏电感引起的电压脉冲,另一项功能是监视Q35的漏极电压,反馈至U4的引脚1,实现过电压保护。
图6
图7
图6是评估电路板顶部、底部和侧面照片。我们可以看到,增添R38,效率提高了1.09%。图7是使用/不使用Vrsense 电压垫高电路(R38)的波形差别示意图。表2是使用/不使用自耦变压器的结果比较。如果不使用自耦变压器,应当去掉D37,将D37的阴极连接到24V Vin。我们可以看到使用自耦变压器,效率提高了14.06%,图8所示为波形比较。
表1:使用/不使用Vrsense电压垫高电路(R38)的结果比较
表2:使用/不使用自耦变压器的结果比较
图8
本文小结
标准CRM PFC控制器就其特性、通用性和低价格而言,适用于中等电压升压转换器。传导损耗是其应用的主要挑战。采用电压垫高电路能够降低Rsense所需的峰值电压以期提升转换器的效率。在升压转换器中采用自耦变压器,允许使用低Vdss MOSFET器件以减小Rdson,从而显著提升效率。评估电路板的测试结果证实这一思路是可行的。
- 简述升压转换器的简单开路保护(12-07)
- 选择升压转换器电感值(12-06)
- 高耗电移动设备的发展(04-29)
- 完整的5V单电源8通道多路复用数据采集系统(08-03)
- Intersil推出新的支持单节锂池供电的升压转换器(01-20)
- MAX8795A 高性能的升压转换器(07-18)