LED电源解决方案:控制正向电流
前言
LED厂商建议通过控制正向电流使发光二极管保持额定的光通量和特定的色温。鉴于LED的亮度与正向电流值成正比,这个控制方法是最佳的LED电源解决方案。
此外,LED的正向电压与输出功率受到结温的严格限制,特别是大功率LED更是如此;结温是众所周知的影响质量和使用寿命的关键参数。
准确地说,随着结温升高,正向电压与输出功率会逐渐降低,热漂移会导致临界电流升高。
为了通过降低正向电压解决热漂移问题,提高系统总体能效,通过PWM和/或模拟调光技术控制亮度,获得防失效管理和过热控制功能,照明系统对具有特定控制功能的LED驱动器的需求不断提高。如果给建筑照明和街道照明等应用增加价值,还需要在LED驱动器内增加遥控功能。
因为大功率因数交流-直流变流器能够把电网交流电压转换成更高的输入直流电压,所以普通照明LED驱动器通常采用标准降压拓扑,这种驱动器基于集成一个功率开关的模拟单片解决方案,最大输出电流达到350mA。
如果电压高于50/60V,因为芯片技术限制,单片解决方案将无法胜任。
很多照明平台需要那些使用多个驱动器的多路输出系统,而这将会增加系统架构和版图设计的复杂性,结果导致设计成本增加。
标准解决方案的主要应用限制与基于并联电阻器和内部比较器的电流检测方法有关。比较器把从灵敏电阻器回馈的电流与内部参考电流值进行比较,然后产生一个用于控制栅极驱动电路的输出信号。
这个常用的模拟控制方法实现了对峰流的控制,因为LED光色漂移在很多要求严格的照明应用领域是不准许的,所以这种方法并不是高品质照明的最佳解决方案。
创新的LED驱动器
意法半导体提出一个能够满足照明要求的高成本效益的街道照明平台解决方案。该方案具有优异的性能、超高能效(全负荷时总体能效大于91%)、完整的防失效管理(过流保护、过压保护和短路保护)功能。
该平台由两大部分组成:电源部分与电流控制器。其中,电流控制器是一个数字电流控制器。
电源电路的最大输出功率达到130W (48V,2.7A),该电路由两级电路组成:基于L6562AT的前端功率因数校正器(PFC)和基于L6599AT的LLC谐振转换器。这个设计的特点如下:
●扩展的欧洲输入交流电压范围 (177 ÷ 277 VAC – 频率 45 ÷ 55 Hz)
●超高能效(全负载是93.85%)免除了对散热器的需求
●无电解电容器,长久可靠
●符合EN61000-3-2 Class-C (交流谐波)、EN55022-Class-B(EMI)和EN60950的双绝缘 (SELV)标准
电流控制器的核心是采用一个以地线为参考的电流检测方法,这个算法是由一个通用微控制器实现的,能够调整反向降压转换器的输出电流。该解决方案无需差分放大器或误差放大器,更不需要网络滤波器以及其它的外部无源器件。
该反向降压拓扑的模式为连续导通模式(CCM),选择CCM模式的原因是反向降压拓扑的功率开关与地线相连,而不是像标准降压拓扑那样连接上桥臂开关。因此,在这个解决方案中,可直接使用微控制器驱动一个逻辑电平(5V)或超逻辑电平(3.3V)功率开关,无需任何栅极驱动级,这使总体解决方案变得简单且成本低廉。图1所示是完整的照明解决方案。
图1:LED街道照明解决方案
灵活性是这个解决方案的研发目的,从低功率、低压到大功率、高压,该解决方案可单独驱动最多16个输出通道。意法半导体拥有街道照明专用产品组合,因此,该解决方案让设计人员只使用一个拓扑就能覆盖各种不同的LED驱动系统。均流检测:专用的微控制器外设
电流控制是这个平台的与众不同之处。该解决方案利用微控制器外设(高分辨率定时器和快速模数转换器)来管理电流控制过程。
触发器/时钟控制器是定时器架构的组件之一,模数转换器触发电路是触发器/时钟控制器内置的一个特殊功能,通过TRGO信号可以管理模数转换器的四个触发信源事件 (Reset, Enable, Up/Down, Count)。
在这个架构内有一个与PWM周期中心对准的三角形载波,当达到最大计算值时,该三角形载波利用TRGO信号触发模数转换器,这个最大值正好是导通时间(Ton/2)波形周期的中间。
如果能够保证连续导通模式运行,这个触发操作与随后的模数转换过程将会计算出均流值,而不是在电流增大期间通过软件处理过程来估算均流,如图2b所示。
图2:a) 在导通期间(Ton)的LED电流; b) 在Ton/2期间的模数转换器触发操作
这个触发功能嵌入在定时器架构内,因为在转换数据能够用于电流回路通过标准PI控制器调整电流前,转换操作都是由软件管理的,所以不会给CPU增加负荷。
此外,Ton/2电流值不受开关操作的影响(图3a),因为没有阻容滤波器引起的延时,所以电流检测精度不再是问
- 利用改进型CCM小信号模型预测有源钳位正向转换器的环路稳定性(11-25)
- 电源设计之缓冲正向转换器(05-11)
- TRIAC 调光器(正向相位控制调光器) 的工作原理(02-28)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)